Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vam3p structure reveals conserved and divergent properties of syntaxins

Abstract

Syntaxins and Sec1/munc18 proteins are central to intracellular membrane fusion. All syntaxins comprise a variable N-terminal region, a conserved SNARE motif that is critical for SNARE complex formation, and a transmembrane region. The N-terminal region of neuronal syntaxin 1A contains a three-helix domain that folds back onto the SNARE motif forming a 'closed' conformation; this conformation is required for munc18-1 binding. We have examined the generality of the structural properties of syntaxins by NMR analysis of Vam3p, a yeast syntaxin essential for vacuolar fusion. Surprisingly, Vam3p also has an N-terminal three-helical domain despite lacking apparent sequence homology with syntaxin 1A in this region. However, Vam3p does not form a closed conformation and its N-terminal domain is not required for binding to the Sec1/munc18 protein Vps33p, suggesting that critical distinctions exist in the mechanisms used by syntaxins to govern different types of membrane fusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vam3p contains an autonomously folded N-terminal domain.
Figure 2: Structure of the Vam3N domain.
Figure 3: Ribbon diagrams showing superpositions of the Vam3N domain (blue) and the N-terminal domain of syntaxin 1A (orange).
Figure 4: Comparison of the sequence and domain structure of Vam3p with those of plasma membrane syntaxins.
Figure 5: 1H-15N HSQC spectra of Vam3p fragments.
Figure 6: The Vam3p N-terminal domain is not required for HA-Vps33p binding.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Bennett, M.K. & Scheller, R.H. The molecular machinery for secretion is conserved from yeast to neurons. Proc. Natl. Acad. Sci. USA 90, 2559–2563 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ferro-Novick, S. & Jahn, R. Vesicle fusion from yeast to man. Nature 370, 191–193 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Jahn, R. & Südhof, T.C. Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863–911 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Gerst, J.E. SNAREs and SNARE regulators in membrane fusion and exocytosis. Cell Mol. Life Sci. 55,707–734 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Bock, J.B. & Scheller, R.H. Protein transport. A fusion of new ideas. Nature 387,133–135 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Pelham, H.R. SNAREs and the secretory pathway; lessons from yeast. Exp. Cell. Res. 247, 1–8 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Südhof, T.C. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375, 645–653 (1995).

    Article  PubMed  Google Scholar 

  8. Bennett, M.K. & Scheller, R.H. A molecular description of synaptic vesicle membrane trafficking. Annu. Rev. Biochem. 63, 63–100 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Hata, Y., Slaughter, C.A. & Sudhof, T.C. Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366, 347–351 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Sollner, T. et al. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051–5061 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Poirier, M.A. et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nature Struct. Biol . 5, 765–769 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Hanson, P.I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J.E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523–535 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Lin, R.C. & Scheller, R.H. Structural organization of the synaptic exocytosis core complex. Neuron 19, 1087–1094 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Fernandez, I. et al. Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94, 841–849 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Dulubova, I. et al. A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J. 18, 4372–4382 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Misura, K.M., Scheller, R.H. & Weis, W.I. Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 404, 355–362 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Fiebig, K.M., Rice, L.M., Pollock, E. & Brunger, A.T. Folding intermediates of SNARE complex assembly. Nature Struct. Biol. 6, 117–123 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Munson, M., Chen, X., Cocina, A. E., Schultz, S.M. & Hughson, F.M. Interactions with the yeast t-SNARE Sso1p that control SNARE complex assembly. Nature Struct. Biol. 7, 894–902 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Carr, C.M., Grote, E., Munson, M., Hughson, F.M. & Novick, P.J. Sec1p binds to SNARE complexes and concentrates at sites of secretion. J. Cell. Biol. 146, 333–344 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Darsow, T., Rieder, S.E. & Emr, S.D. A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J. Cell. Biol. 138, 517–529 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nichols, B.J., Ungermann, C., Pelham, H.R., Wickner, W.T. & Haas, A. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature 387, 199–202 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Wickner, W. & Haas, A. Yeast homotypic vacuole fusion: a window on organelle trafficking mechanisms. Annu. Rev. Biochem. 69, 247–275 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Sato, T. K., Rehling, P., Peterson, M.R. & Emr, S.D. Class C Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion. Mol. Cell 6, 661–671 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Price, A., Seals, D., Wickner, W. & Ungermann, C. The docking step of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein. J. Cell Biol. 148, 1231–1238 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kee, Y., Lin, R.C., Hsu, S.-C. & Scheller, R.H. Distinct domains of syntaxin are required for synaptic vesicle fusion complex formation and dissociation. Neuron 14, 991–998 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Fasshauer, D., Bruns, D., Shen, B., Jahn, R. & Brunger, A.T. A structural change occurs upon binding of syntaxin to SNAP-25. J. Biol. Chem. 272, 4582–4590 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Calakos, N., Bennett, M.K., Peterson, K.E. & Scheller, R.H. Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. Science 263, 1146–1149 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Guan, K.L. & Dixon, J.E. Eucaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal. Biochem. 192, 262–267 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Hakes, D.J. & Dixon, J.E. New vectors for high level expression of recombinant proteins in bacteria. Anal. Biochem . 202, 293–298 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Ubach, J., Garcia, J., Nittler, M.P., Südhof, T.C. & Rizo, J. Structure of the Janus-faced C2B-domain of rabphilin. Nature Cell Biol. 1, 106–112 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, O., Kay, L.E., Olivier, J.P. & Forman-Kay, J. Backbone 1H and 15N resonance assignments of N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J. Biomol. NMR 4, 845–858 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Kay, L.E., Xu, G.Y. & Yamazaki, T. Enhanced-sensitivity triple-resonance spectroscopy with minimal H2O saturation. J. Magn. Reson. A 109, 129–133 (1994).

    Article  CAS  Google Scholar 

  36. Muhandiram, D.R. & Kay, L.E. Gradient-enhanced triple-resonance three-dimensional NMR experiments with improved sensitivity. J. Magn. Reson. B 103, 203–216 (1994).

    Article  CAS  Google Scholar 

  37. Kay, L.E. Pulsed-field gradient-enhanced three-dimensional NMR experiment for correlating 13Cα/β, 13C′, and 1Hα chemical shifts in uniformly 13C-labeled proteins dissolved in H2O. J. Am. Chem. Soc. 115, 2055–2057 (1993).

    Article  CAS  Google Scholar 

  38. Grzesiek, S., Anglister, J. & Bax, A. Correlation of backbone amide and aliphatic side-chain resonances in 13C/15N-enriched proteins by isotropic mixing of 13C magnetization. J. Magn. Reson. B 101, 114–119 (1993).

    Article  CAS  Google Scholar 

  39. Kay, L.E., Xu, G.Y., Singer, A.U., Muhandiram, D.R. & Forman-Kay, J.D. A gradient-enhanced HCCH-TOCSY experiment for recording side-chain 1H and 13C correlations in H2O samples of proteins. J. Magn. Reson. B 101, 333–337 (1993).

    Article  CAS  Google Scholar 

  40. Kuboniwa, H., Grzesiek, S., Delaglio, F. & Bax, A. Measurement of HN-Ha J couplings in calcium-free calmodulin using new 2D and 3D water-flip-back methods. J. Biomol. NMR 4, 871–878 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A . NMRpipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Johnson, B.A. & Blevins, R.A. NMRView: a computer program for visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Brunger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Stack, J.H., Herman, Schu, P.V. & Emr, S.D. A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J. 12, 2195–2204 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Robinson, J.S., Klionsky, D.J., Banta, L.M. & Emr, S.D. Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol. Cell. Biol. 8, 4936–4948 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gietz, R.D., Schiestl, R.H., Willems, A.R. & Woods, R.A. Studies on the transformation of intact yeast cells by LiAc/ss-DNA/PEG procedure. Yeast 11, 355–360 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Haas, A. A quantitative assay to measure homotypic vacuole fusion in vitro. Methods Cell Sci. 17, 283–294 (1995).

    Article  Google Scholar 

  48. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  49. Nicholls, A. Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Laskowsky, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check stereochemical quality of protein structure coordinates. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Gao for technical assistance, B. Horazdovsky for reagents and fruitful discussions, and L. Kay for providing pulse sequences. This work was supported by an Established Investigator grant from the American Heart Association and by an NIH grant to JR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Rizo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dulubova, I., Yamaguchi, T., Wang, Y. et al. Vam3p structure reveals conserved and divergent properties of syntaxins. Nat Struct Mol Biol 8, 258–264 (2001). https://doi.org/10.1038/85012

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85012

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing