Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization

Abstract

Smad proteins mediate the transforming growth factor β responses. C-terminal phosphorylation of R-Smads leads to the recruitment of Smad4 and the formation of active signaling complexes. We investigated the mechanism of phosphorylation-induced Smad complex formation with an activating pseudo-phosphorylated Smad3. Pseudo-phosphorylated Smad3 has a greater propensity to homotrimerize, and recruits Smad4 to form a heterotrimer containing two Smad3 and one Smad4. The trimeric interaction is mediated through conserved interfaces to which tumorigenic mutations map. Furthermore, a conserved Arg residue within the L3 loop, located near the C-terminal phosphorylation sites of the neighboring subunit, is essential for trimerization. We propose that the phosphorylated C-terminal residues interact with the L3 loop of the neighboring subunit to stabilize the trimer interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oligomerization states of S4AF, S3LC and S3LC(3E).
Figure 2: Ratio of Smad subunits within the heteromeric complex and the basis of subunit association.
Figure 3: The sulfate binding site within the L3 loop is critical for Smad heteromeric interaction.
Figure 4: Proposed model of phosphorylation induced Smad protein activation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. de Caestecker, M.P., Piek, E. & Roberts, A.B. J. Natl. Cancer Inst. 92, 1388–1402 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Blobe, G.C., Schiemann, W.P. & Lodish, H.F. New Eng. J. Med. 342, 1350–1358 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Heldin, C.H., Miyazono, K. & ten Dijke, P. Nature 390, 465–471 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Massague, J. & Wotton, D. EMBO J. 19, 1745–1754 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu, F., Pouponnot, C. & Massague, J. Genes Dev. 11, 3157–3167 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shi, Y., Hata, A., Lo, R.S., Massague, J. & Pavletich, N.P. Nature 388, 87–93 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Shi, Y. et al. Cell 94, 589–594 (1998).

    Article  Google Scholar 

  8. de Caestecker, M.P. et al. J. Biol. Chem. 272, 13690–13696 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Qin, B., Lam, S.S.W. & Lin, K. Structure 7, 1493–1503 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. de Caestecker, M.P. et al. J. Biol. Chem. 275, 2115–2122 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, X. et al. Proc. Natl. Acad. Sci. USA 94, 10669–10674 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Souchelnytskyi, S. et al. J. Biol. Chem. 272, 28107–28115 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Abdollah, S. et al. J. Biol. Chem. 272, 27678–27685 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Macias-Silva, M. et al. Cell 87, 1215–1224 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Kawabata, M., Inoue, H., Hanyu, A., Imamura, T. & Miyazono, K. EMBO J. 17, 4056–4065 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu, R.Y., Zhang, Y., Feng, X.H. & Derynck, R. Mol. Cell. Biol. 17, 2521–2528 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Y., Feng, X.H. & Derynck, R. Nature 394, 909–913 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Yingling, J.M. et al. Mol. Cell. Biol. 17, 7019–7028 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zawel, L. et al. Mol. Cell 1, 611–617 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Kim, R.H. et al. Genes Dev. 14, 1605–1616 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu, G. et al. Science 287, 92–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Eppert, K. et al. Cell 86, 543–552 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Sekelsky, J.J., Newfeld, S.J., Raftery, L.A., Chartoff, E.H. & Gelbart, W.M. Genetics 139, 1347–1358 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Savage, C. et al. Proc. Natl. Acad. Sci. USA 93, 790–794 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lo, R.S., Chen, Y.G., Shi, Y., Pavletich, N.P. & Massague, J. EMBO J. 17, 996–1005 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feng, X.H., Lin, X. & Derynck, R. EMBO J. 19, 5178–5193 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Labbe, E., Silvestri, C., Hoodless, P.A., Wrana, J.L. & Attisano, L. Mol. Cell 2, 109–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Tsukazaki, T., Chiang, T.A., Davison, A.F., Attisano, L. & Wrana, J.L. Cell 95, 779–791 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Brunger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Sack, J.S. J. Mol. Graphics 6, 244 (1988).

    Article  Google Scholar 

  32. Jonk, L.J., Itoh, S., Heldin, C.H., ten Dijke, P. & Kruijer, W. J. Biol. Chem. 273, 21145–21152 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Correia, J.J., Chacko, B.M. & Lam, S.S, & Lin, K. Biochemistry in the press (2001).

    Google Scholar 

Download references

Acknowledgements

We thank A. Roberts (NIH), M. Marinus (UMass), and K. Knight (UMass) for helpful suggestions of the manuscript, R. Derynck for the Smad4-Myc construct and the wild type GST fusion Smad3/Smad4 constructs, W. Kruijer for the SBE-Lux construct, S. Davis for technical assistance. This research is funded by the Sidney Kimmel Foundation Scholar Award and the center grant from the Diabetes and Endocrinology Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chacko, B., Qin, B., Correia, J. et al. The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization. Nat Struct Mol Biol 8, 248–253 (2001). https://doi.org/10.1038/84995

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84995

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing