Letter | Published:

Predicting the emergence of antibiotic resistance by directed evolution and structural analysis

Nature Structural Biologyvolume 8pages238242 (2001) | Download Citation

Subjects

Abstract

Directed evolution can be a powerful tool to predict antibiotic resistance. Resistance involves the accumulation of mutations beneficial to the pathogen while maintaining residue interactions and core packing that are critical for preserving function. The constraint of maintaining stability, while increasing activity, drastically reduces the number of possible mutational combination pathways. To test this theory, TEM-1 β-lactamase was evolved using a hypermutator E. coli-based directed evolution technique with cefotaxime selection. The selected mutants were compared to two previous directed evolution studies and a database of clinical isolates. In all cases, evolution resulted in the generation of the E104K/M182T/G238S combination of mutations (500-fold increased resistance), which is equivalent to clinical isolate TEM-52. The structure of TEM-52 was determined to 2.4 Å. G238S widens access to the active site by 2.8 Å whereas E104K stabilizes the reorganized topology. The M182T mutation is located 17 Å from the active site and appears to be a global suppressor mutation that acts to stabilize the new enzyme structure. Our results demonstrate that directed evolution coupled with structural analysis can be used to predict future mutations that lead to increased antibiotic resistance.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accession codes

Accessions

Protein Data Bank

References

  1. 1

    Stemmer, W.P. Nature 370, 389–391 (1994).

  2. 2

    Zaccolo, M. & Gherardi, E. J. Mol. Biol. 285, 775–783 (1999).

  3. 3

    Jacoby, G. & Bush, K. http://www.lahey.org/studies/webt.htm (2000).

  4. 4

    Poyart, C., Mugnier, P., Quesne, G., Berche, P. & Trieu-Cuot, P. Antimicrob. Agents Chemother. 42, 108–113 (1998).

  5. 5

    Giakkoupi, P., Tzelepi, E., Tassios, P.T., Legakis, N.J. & Tzouvelekis, L. S. J. Antimicrob. Chemother. 45, 101–104 (2000).

  6. 6

    Skandalis, A., Encell, L.P. & Loeb, L.A. Chem. Biol. 4, 889–898 (1997).

  7. 7

    Echols, H., Lu, C. & Burgers, P.M. J. Proc. Natl. Acad. Sci. USA 80, 2189–2192 (1983).

  8. 8

    Low, N.M., Holliger, P.H. & Winter, G. J. Mol. Biol . 260, 359–368 (1996).

  9. 9

    Knox, J. Antimicrob. Agents Chemother. 39, 2593–2601 (1995).

  10. 10

    Matagne, A., Lamotte-Brasseur, J. & Frere, J.M. Biochem. J. 330, 581–598 (1998).

  11. 11

    Raquet, X. et al. Proteins 23, 63–72 (1995).

  12. 12

    Du Bois, S.K., Marriott, M. S. & Amyes, S.G.B. J. Antimicrob. Chemother. 35, 7–22 (1995).

  13. 13

    Long-McGie, J., Liu, A.D. & Schellenberger, V. Biotechnol. Bioeng. 68, 121–125 (2000).

  14. 14

    Medeiros, A.A. Clin. Infect. Dis. 24 (Suppl. 1), S19–45 (1997).

  15. 15

    Huang, W. & Palzkill, T. Proc. Natl. Acad. Sci. USA 94, 8801–8806 (1997).

  16. 16

    Farzaneh, S. et al. Antimicrob. Agents Chemother. 40, 2434–2436 (1996).

  17. 17

    Huang, W., Petrosino, J., Hirsch, M., Shenkin, P.S. & Palzkill, T. J. Mol. Biol. 258, 688–703 (1996).

  18. 18

    Yang, Y., Bhachech, N., Bradford, P.A., Jett, B.D., Sahm, D.F. & Bush, K. Antimicrob. Agents Chemother. 42,1671–1676 (1998).

  19. 19

    Aramli, L.A. & Teschke, C.M. J. Biol. Chem. 274, 22217–22224 (1999).

  20. 20

    Nikolova, P.V., Wong, K.B., DeDecker, B., Henckel, J. & Fersht, A.R. EMBO J. 19, 370–378 (2000).

  21. 21

    Vanhove, M., Lejeune, A. & Pain, R.H. Cell. Mol. Life Sci. 54, 372–377 (1998).

  22. 22

    Jelsch, C., Mourey, L., Masson, J. & Samama., J. Proteins 16, 364–383 (1993).

  23. 23

    Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

  24. 24

    Navaza, J. Acta. Crystallogr. A 50, 157–163 (1994).

  25. 25

    Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta. Crystallgr. A 47, 110–119 (1991).

  26. 26

    Brunger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

Download references

Acknowledgements

This work was supported in part by the Scripps Research Institute.

Author information

Affiliations

  1. Department of Molecular Biology, The Scripps Research Institute, La Jolla, 92037, California, USA

    • M. Cecilia Orencia
    • , Jun S. Yoon
    •  & Raymond C. Stevens
  2. Maxygen, Redwood City, 94063, California, USA

    • Jon E. Ness
    •  & Willem P. C. Stemmer

Authors

  1. Search for M. Cecilia Orencia in:

  2. Search for Jun S. Yoon in:

  3. Search for Jon E. Ness in:

  4. Search for Willem P. C. Stemmer in:

  5. Search for Raymond C. Stevens in:

Corresponding author

Correspondence to Raymond C. Stevens.

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/84981

Further reading