Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Prediction and confirmation of a site critical for effector regulation of RGS domain activity

Abstract

A critical challenge of structural genomics is to extract functional information from protein structures. We present an example of how this may be accomplished using the Evolutionary Trace (ET) method in the context of the regulators of G protein signaling (RGS) family. We have previously applied ET to the RGS family and identified a novel, evolutionarily privileged site on the RGS domain as important for regulating RGS activity. Here we confirm through targeted mutagenesis of RGS7 that these ET-identified residues are critical for RGS domain regulation and are likely to function as global determinants of RGS function. We also discuss how the recent structure of the complex of RGS9, Gt/i1α–GDP–AlF4 and the effector subunit PDEγ confirms their contact with the effector–G protein interface, forming a structural pathway that communicates from the effector-contacting surface of the G protein and RGS catalytic core domain to the catalytic interface between Gα and RGS. These results demonstrate the effectiveness of ET for identifying binding sites and efficiently focusing mutational studies on their key residues, thereby linking raw sequence and structure data to functional information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence alignment of selected RGS domains.
Figure 2: An effector-proximal surface on RGS9 defined by Trace residues.
Figure 3: Results of ET based targeted mutagenesis of the RGS7 domain.
Figure 4: A model for regulation of RGS activity via positions bc and e.

Similar content being viewed by others

References

  1. Cowan, C.W., He, W. & Wensel, T.G. Prog. Nucl. Acid Res. Mol. Biol. 65, 341–359 (2000).

    Article  Google Scholar 

  2. Benzing, T. et al. J. Biol. Chem. 275, 28167–28172 (2000).

    CAS  PubMed  Google Scholar 

  3. Zheng, B., Chen, D. & Farquhar, M. Proc. Natl. Acad. Sci. USA 97, 4040–4045 (2000).

    Article  Google Scholar 

  4. Kovoor, A. et al. J. Biol. Chem. 275, 3397–3402 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Posner, B.A., Gilman, A.G. & Harris, B.A. J. Biol. Chem. 274, 31087–31093 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. McEntaffer, R.L., Natochin, M. & Artemyev, N.O. Biochemistry 38, 4931–4937 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Nekrasova, E.R. et al. Biochemistry 36, 7638–7643 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Natochin, M., Granovsky, A.E. & Artemyev, N.O. J. Biol. Chem. 272, 17444–17449 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Popov, S., Krishna, U., Falck, J. & Wilkie, T. J. Biol. Chem. 27, 18962–18968 (2000).

    Article  Google Scholar 

  10. Womack, K. et al. J. Neurosci. 20, 2792–2799 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tu, Y., Popov, S., Slaughter, C. & Ross, E. J. Biol. Chem. 274, 38260–38267 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, C., Seow, K.T., Guo, K., Yaw, L.P. & Lin, S.C. J. Biol. Chem. 274, 19799–197806 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Druey, K.M. et al. J. Biol. Chem. 274, 18836–18842 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Lichtarge, O., Bourne, H.R. & Cohen, F.E. J. Mol. Biol. 257, 342–358 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Sowa, M.E., He, W., Wensel, T.G. & Lichtarge, O. Proc. Natl. Acad. Sci. USA 97, 1483–1488 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. He, W., Cowan, C.W. & Wensel, T.G. Neuron 20, 95–102 (1998).

    Article  PubMed  Google Scholar 

  17. Makino, E.R., Handy, J.W., Li, T. & Arshavsky, V.Y. Proc. Natl. Acad. Sci. USA 96, 1947–1952 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, C.K. et al. Nature 403, 557–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Arshavsky, V. & Bownds, M.D. Nature 357, 416–417 (1992).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lichtarge, O., Bourne, H.R. & Cohen, F.E. Proc. Natl. Acad. Sci. USA 93, 7507–7511 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lichtarge, O., Yamamoto, K.R. & Cohen, F.E. J. Mol. Biol. 274, 325–337 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Onrust, R. et al. Science 275, 381–384 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Slep, K.C. et al. Nature, in the press (2001).

  24. Tesmer, J.J., Berman, D.M., Gilman, A.G. & Sprang, S.R. Cell 89, 251–261 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Cowan, C.W., Wensel, T.G. & Arshavsky, V.Y. Methods Enzymol. 315, 524–538 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Nicholls, A., Sharp, K. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Kraulis, P. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  28. Merritt, E. & Bacon, D. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH, NLM, the Welch Foundation, and the Keck Center for Computational Biology. M.A.K. is a Howard Hughes Medical Institute Fellow of the Life Sciences Research Foundation. O.L gratefully acknowledges the support of the American Heart Association and NHGRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Lichtarge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sowa, M., He, W., Slep, K. et al. Prediction and confirmation of a site critical for effector regulation of RGS domain activity. Nat Struct Mol Biol 8, 234–237 (2001). https://doi.org/10.1038/84974

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84974

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing