Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the RTP–DNA complex and the mechanism of polar replication fork arrest

Abstract

The coordinated termination of DNA replication is an important step in the life cycle of bacteria with circular chromosomes, but has only been defined at a molecular level in two systems to date. Here we report the structure of an engineered replication terminator protein (RTP) of Bacillus subtilis in complex with a 21 base pair DNA by X-ray crystallography at 2.5 Å resolution. We also use NMR spectroscopic titration techniques. This work reveals a novel DNA interaction involving a dimeric 'winged helix' domain protein that differs from predictions. While the two recognition helices of RTP are in close contact with the B-form DNA major grooves, the 'wings' and N-termini of RTP do not form intimate contacts with the DNA. This structure provides insight into the molecular basis of polar replication fork arrest based on a model of cooperative binding and differential binding affinities of RTP to the two adjacent binding sites in the complete terminator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of the RTP.C110S–sRB complex and summary of protein–DNA interactions.
Figure 2: Sites of RTP–DNA contact from crystallographic data
Figure 3: Perturbations to RTP upon binding DNA as shown by NMR.
Figure 4: Model of the complete RTP–DNA terminator complex.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hill, T.M. In Escherichia coli and Salmonella: cellular and molecular biology. (eds Neidhardt, F.C. et al.) 1602–1614 (American Society for Microbiology, Washington DC; 1996).

    Google Scholar 

  2. Wake, R.G. FEMS Microbiol. Lett. 153, 247–254 (1997).

    Article  CAS  Google Scholar 

  3. Wake, R.G. & King G.F. Structure 5, 1–5 (1997).

    Article  CAS  Google Scholar 

  4. Bussiere, D.E., Bastia, D. & White, S.W. Cell 80, 651–660 (1995).

    Article  CAS  Google Scholar 

  5. Smith, M.T., de Vries, C.J., Langley, D.B., King, G.F. & Wake, R.G. J. Mol. Biol. 260, 54–69 (1996).

    Article  CAS  Google Scholar 

  6. Griffiths, A.A. & Wake, R.G. J. Bacteriol. 182, 1448–1451 (2000).

    Article  CAS  Google Scholar 

  7. Kamada, K., Horiuchi, T., Ohsumi, K., Shimamoto, N. & Morikawa, K. Nature 383, 598–603 (1996).

    Article  CAS  Google Scholar 

  8. Griffiths, A.A., Andersen, P.A. & Wake, R.G. J. Bacteriol. 180, 3360–3367 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Langley, D.B., Smith, M.T., Lewis, P.J. & Wake, R.G. Mol. Microbiol . 10, 771–779 (1993).

    Article  CAS  Google Scholar 

  10. Manna, A.C., Pai, K.S., Bussiere, D.E., White, S.W. & Bastia, D. Proc. Natl. Acad. Sci. USA 93, 3253–3258 (1996).

    Article  CAS  Google Scholar 

  11. Manna, A. et al. Cell 87, 881–891 (1996).

    Article  CAS  Google Scholar 

  12. Duggin, I.G. et al. J. Mol. Biol . 286, 1325–1335 (1999).

    Article  CAS  Google Scholar 

  13. Pai, K.S. et al. EMBO J. 15, 3164–3173 (1996).

    Article  CAS  Google Scholar 

  14. Pai, K.S., Bussiere, D.E., Wang, F., White, S.W. & Bastia, D. Proc. Nat. Acad. Sci. USA 93, 10647–10652 (1996).

    Article  CAS  Google Scholar 

  15. Swindells, M.B. Trends Biochem. Sci. 20, 300–302 (1995).

    Article  CAS  Google Scholar 

  16. Kralicek, A.V., Wilson, P.K., Ralston, G.B., Wake, R.G. & King, G.F. Nucleic Acids Res. 25, 590–596 (1997).

    Article  CAS  Google Scholar 

  17. Kralicek, A.V., Vesper, N.A., Ralston, G.B., Wake R.G. & King, G.F. Biochemistry 32, 10216–10223 (1993).

    Article  CAS  Google Scholar 

  18. Salzmann, M., Pervushin, K., Wider, G. & Senn, H, Wüthrich, K. Proc. Natl. Acad. Sci. USA 95, 13585–13590 (1998).

    Article  CAS  Google Scholar 

  19. Salzmann, M., Wider, G., Pervushin, K., Senn, H. & Wüthrich, K. J. Am. Chem. Soc. 121, 844–848 (1999).

    Article  CAS  Google Scholar 

  20. Talluri, S. & Wagner, G. J. Magn. Reson. B 112, 200–205 (1996).

    Article  CAS  Google Scholar 

  21. Otwinowski, Z. & Minor, W. Methods Enzymol . 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  22. Collaborative Computing Project 4. Acta Crystallogr. D 50, 760–764 (1994).

  23. Brünger A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  24. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  25. Kraulis, P.J. J. Appl. Crystallogr. 24, 945–949 (1991).

    Article  CAS  Google Scholar 

  26. Merrit, E.A. & Murphy, M.E.P. Acta Crystallogr. D 50, 869–873 (1994).

    Article  Google Scholar 

  27. Luscombe, N.M., Laskowski, R.A. & Thornton, J.M. Nucleic Acids Res. 25, 4940–4945 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science. Use of the BioCARS Sector 14 was supported by the National Institutes of Health, National Center for Research Resources. This research was supported by grants from the Arnold Yeldham and Mary Raine Medical Research Foundation (M.C.J.W.), the Australia Research Council Fellowship (J.A.W.) and Small Grant Schemes (M.C.J.W. and J.A.W.), and the Swedish Natural Science Research Council (G.O.). We would also like to thank G.F. King for valuable scientific discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.C.J. Wilce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilce, J., Vivian, J., Hastings, A. et al. Structure of the RTP–DNA complex and the mechanism of polar replication fork arrest. Nat Struct Mol Biol 8, 206–210 (2001). https://doi.org/10.1038/84934

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84934

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing