Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis of gene regulation by the tetracycline inducible Tet repressor–operator system

Abstract

The tetracycline repressor (TetR) regulates the most abundant resistance mechanism against the antibiotic tetracycline in gram-negative bacteria. The TetR protein and its mutants are commonly used as control elements to regulate gene expression in higher eukaryotes. We present the crystal structure of the TetR homodimer in complex with its palindromic DNA operator at 2.5 Å resolution. Comparison to the structure of TetR in complex with the inducer tetracycline-Mg2+ allows the mechanism of induction to be deduced. Inducer binding in the repressor core initiates conformational changes starting with C-terminal unwinding and shifting of the short helix α6 in each monomer. This forces a pendulum-like motion of helix α4, which increases the separation of the attached DNA binding domains by 3 Å, abolishing the affinity of TetR for its operator DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Chemical structure of the tetracycline-Mg2+ complex occurring under physiological conditions.
Figure 2: Structure of the TetR–tetO complex.
Figure 3: Sequence specific TetR–tetO interactions.
Figure 4: Comparison of TetR in induced (yellow) and DNA-bound form (blue).

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. McMurry, L., Petrucci, R.E. & Levy, S.B. Proc. Natl. Acad. Sci. USA 77, 3974–3977 (1980).

    Article  CAS  Google Scholar 

  2. Yamaguchi, A., Iwasaki-Ohba, Y., Ono, N., Kaneko-Ohdera, M. & Sawai, T. FEBS Lett. 282, 415–418 (1991).

    Article  CAS  Google Scholar 

  3. Schnappinger, D. & Hillen, W. Arch. Microbiol. 165, 359–369 ( 1996).

    Article  CAS  Google Scholar 

  4. Hillen, W. & Berens, C. Ann. Rev. Microbiol. 48, 345–369 (1994).

    Article  CAS  Google Scholar 

  5. Bertrand, K.P., Postle, K., Wray, Jr., L.V. & Reznikoff, W.S. Gene 23, 149–156 ( 1983).

    Article  CAS  Google Scholar 

  6. Eckert, B. & Beck, C.F. J. Bacteriol. 171, 3557–3559 (1989).

    Article  CAS  Google Scholar 

  7. Kleinschmidt, C., Tovar, K., Hillen, W. & Pörschke, D. Biochemistry 27, 1094–1104 ( 1988).

    Article  CAS  Google Scholar 

  8. Lederer, T., Takahashi, M. & Hillen, W. Anal. Biochemistry 232, 190– 196 (1995).

    Article  CAS  Google Scholar 

  9. Gossen, M., et al. Science 268, 1766– 1769 (1995).

    Article  CAS  Google Scholar 

  10. Freundlieb, S., Baron, U., Bonin, A.L., Gossen, M. & Bujard, H. Methods Enzymol. 283, 159– 173 (1997).

    Article  CAS  Google Scholar 

  11. Rossi, F.M.V. & Blau, H.M. Curr. Opin. Biotechnol. 9, 451– 456 (1998).

  12. Förster, K., et al. Nucleic Acids Res. 27, 708– 710 (1999).

    Article  Google Scholar 

  13. Baron, U., et al. Proc. Natl. Acad. Sci. USA 96, 1013 –1018 (1999).

    Article  CAS  Google Scholar 

  14. Hinrichs, W. et al. Science 264, 418–420 (1994).

    Article  CAS  Google Scholar 

  15. Kisker, C., Hinrichs, W., Tovar, K., Hillen, W. & Saenger, W. J. Mol. Biol. 247, 260– 280 (1995).

    Article  CAS  Google Scholar 

  16. Orth, P. et al. J. Mol. Biol. 279, 439– 447 (1998).

    Article  CAS  Google Scholar 

  17. Otwinowski, Z., et al. Nature 335, 321–329 (1988).

    Article  CAS  Google Scholar 

  18. Lewis, M. et al. Science 271, 1247–1254 (1996).

    Article  CAS  Google Scholar 

  19. Schumacher, M.A., Choi, K.Y., Lu, F., Zalkin, H. & Brennan, R.G. Cell 83, 147– 155 (1995).

    Article  CAS  Google Scholar 

  20. Steitz, T.A., Ohlendorf, D.H., McKay, D.B., Anderson, W. & Matthews, B.W. Proc. Natl. Acad. Sci. USA 79, 3097–3100 (1982).

    Article  CAS  Google Scholar 

  21. Heuer, C. & Hillen, W. J. Mol. Biol. 202, 407–415 (1988).

    Article  CAS  Google Scholar 

  22. Sizemore, C., Wissmann, A., Gülland, U. & Hillen, W. Nucl. Acids Research 18, 2875–2880 (1990).

    Article  CAS  Google Scholar 

  23. Wissmann, A. et al. EMBO J. 10, 4145–4152 (1991).

    Article  CAS  Google Scholar 

  24. Baumeister, R., Helbl, V. & Hillen, W. J. Mol. Biol. 226, 1257– 1270 (1992).

    Article  CAS  Google Scholar 

  25. Helbl, V., Berens, C. & Hillen, W. J. Mol. Biol. 245, 538– 548 (1995).

    Article  CAS  Google Scholar 

  26. Schwabe, J.W.R. Curr. Opin. Struct. Biol. 7, 126–134 (1997).

    Article  CAS  Google Scholar 

  27. Harrison, S.C. Nature 353, 715–719 ( 1991).

    Article  CAS  Google Scholar 

  28. Müller, G. et al. Nature Struct. Biol. 2, 693– 703 (1995).

    Article  Google Scholar 

  29. Orth, P., Saenger, W. & Hinrichs, W. Biochemistry 38, 191– 198 (1999).

    Article  CAS  Google Scholar 

  30. Degenkolb, J., Takahashi, M., Ellestad, G.A. & Hillen, W. Antimicrob. Agents Chemother. 35, 1591– 1595 (1991).

    Article  CAS  Google Scholar 

  31. Orth, P. et al. J. Mol. Biol. 285, 455– 461 (1999).

    Article  CAS  Google Scholar 

  32. Arvidson, D.N., Lu, F., Faber, C., Zalkin, H. & Brennan, R.G. Nature Struct. Biol. 5, 436 –441 (1998).

    Article  CAS  Google Scholar 

  33. Schumacher, M.A., Glasfeld, A., Zalkin, H. & Brennan, R.G. J. Biol. Chem. 272, 22648–22653 ( 1997).

    Article  CAS  Google Scholar 

  34. Kercher, M.A., Lu, P. & Lewis, M. Curr. Opin. Struct. Biol. 7, 76–85 (1997).

    Article  CAS  Google Scholar 

  35. Orth, P., Alings, C., Schnappinger, D., Saenger, W. & Hinrichs, W. Acta Crystallogr. D 54, 99–100 (1998).

    Article  CAS  Google Scholar 

  36. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  Google Scholar 

  37. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–776 (1994).

  38. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  39. Jones, A.T., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 ( 1991).

    Article  Google Scholar 

  40. Brünger, A.T. X-PLOR Manual version 3.843 (Yale University Press, New Haven, Connecticut; 1996).

  41. Ravishanker, G., Swaminathan, S., Beveridge, D.L., Lavery, R. & Sklenar, H. J. Biomol. Struct. Dyn. 6, 669–699 (1989).

    Article  CAS  Google Scholar 

  42. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  43. Merritt, E.A. & Murphy, M.E.P. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Helpful discussions with A. Steinmetz and T. Simonson (IGBMC, Strasbourg) and DNA purification and cocrystallization by C. Alings are gratefully acknowledged. This work was supported by grants of the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 344) and by Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wolfram Saenger or Winfried Hinrichs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orth, P., Schnappinger, D., Hillen, W. et al. Structural basis of gene regulation by the tetracycline inducible Tet repressor–operator system. Nat Struct Mol Biol 7, 215–219 (2000). https://doi.org/10.1038/73324

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73324

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing