Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solution structure of the smallest cofactor-active fragment of thrombomodulin

Abstract

A glycosylated fragment of thrombomodulin containing two epidermal growth factor-like domains (TMEGF45) was analyzed by NMR. The 4th-domains structure of this two-domain fragment is similar to that of the individual domain previously determined. The 5th-domain, which has uncrossed disulfide bonds, is not as well determined in the two-domain fragment than the individual domain previously solved. The flexibility of the 5th-domain is consistent with low heteronuclear NOEs. In the individual 5th-domain, Met 388 was disordered, and key thrombin-binding residues formed a hydrophobic core. By contrast, in TMEGF45, Met 388 is in the 5th-domain core, positioned by Phe 376 from the 4th-domain. As a result, key thrombin-binding residues that were in the core of the individual domain are expelled. Upon thrombin binding, chemical shifts of two residues in the 4th-domain, the three interdomain linker residues, and nearly all of the 5th-domain are perturbed. Thus, TMEGF45 binds thrombin by an induced fit mechanism involving a flexible 5th-domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NMR data for TMEGF45.
Figure 2: Structure of TMEGF45.
Figure 3: Analysis of TMEGF45 structure.
Figure 4: Central role of Met 388 in interdomain contacts.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Esmon, C.T. J. Biol. Chem. 264, 4743–4746 (1989).

    CAS  PubMed  Google Scholar 

  2. Esmon, N.L. Prog. Hemost. Throm. 9, 29–55 (1989).

    CAS  Google Scholar 

  3. White, C.E., Hunter, M.J., Meininger, D.P., White, L.R. & Komives, E.A. Protein Eng. 8, 1177–1187 (1995).

    Article  CAS  Google Scholar 

  4. Meininger, D.P., Hunter, M.J. & Komives, E.A. Protein Sci. 4, 1683–1695 (1995).

    Article  CAS  Google Scholar 

  5. Sampoli Benitez, B.A., Hunter, M.J., Meininger, D.P. & Komives, E.A. J. Mol. Biol. 273, 913–926 (1997).

    Article  CAS  Google Scholar 

  6. Nagashima, M., Lundh, E., Leonard, J.C., Morser, J. & Parkinson, J.F. J. Biol. Chem. 268, 2888–2892 (1993).

    CAS  PubMed  Google Scholar 

  7. Clarke, J.H., et al. J. Biol. Chem. 268, 6309–6315 (1993).

    CAS  PubMed  Google Scholar 

  8. Glaser, C.B. et al. J. Clin. Invest. 90, 2565–2573 (1992).

    Article  CAS  Google Scholar 

  9. Hunter, M.J. & Komives, E.A., Protein Sci. 4, 2129–2137 (1995).

    Article  CAS  Google Scholar 

  10. White, C.E., Hunter, M.J., Meininger, D.P., Garrod, S. & Komives, E.A., Proc. Natl. Acad. Sci. 93, 10177–10182 (1996).

    Article  CAS  Google Scholar 

  11. Downing, A.K. et al. Cell 85, 597–605 (1996).

    Article  CAS  Google Scholar 

  12. Morgan, W.D., et al. J. Mol. Biol. 289, 113–122 (1999).

    Article  CAS  Google Scholar 

  13. Brandstettler, H., Bauer, M., Huber, R., Lollar, P. & Bode, W., Proc. Natl. Acad. Sci. 92, 9796–9800 (1995).

    Article  Google Scholar 

  14. Pike, A.C.W., Brzozowski, A.M., Roberts, S.M., Olsen, O.H. & Persson, E., Proc. Natl. Acad. Sci. 96, 8925–8930 (1999).

    Article  CAS  Google Scholar 

  15. Wishart, D.S., Bigam, C.G., Holm, A., Hodges, R.S. & Sykes, B.D., J.Biomol. NMR 5, 67–81 (1995).

    Article  CAS  Google Scholar 

  16. Jacobsen, N.E., et al. Biochemistry 35, 3402–3417 (1996).

    Article  CAS  Google Scholar 

  17. Hrabal, R., Komives, E.A. & Ni, F., Protein Sci. 5, 195–203 (1996).

    Article  CAS  Google Scholar 

  18. Esmon, C.T., FASEB J. 9, 946–950 (1995).

    Article  CAS  Google Scholar 

  19. Holmbeck, S.M.A., Dyson, H.J. & Wright, P.E., J. Mol. Biol. 284, 533–539 (1998).

    Article  CAS  Google Scholar 

  20. Jin, C., Marsden, I., Chen, X. & Liao, X., J. Mol. Biol. 289, 683–690 (1999).

    Article  CAS  Google Scholar 

  21. van Tilborg, P.J., et al. Biochemistry 38, 1951–1956 (1999).

    Article  CAS  Google Scholar 

  22. Wikstrom, A., Berglund, H., Hambraeus, C., van den Berg, S. & Hard, T., J. Mol. Biol. 289, 963–979 (1999).

    Article  CAS  Google Scholar 

  23. Baerga-Ortiz, A., Rezaie, A.R. & Komives, E.A., J. Mol. Biol. 296, 651–658 (2000).

  24. Wood, M.J. & Komives, E.A., J. Biomol. NMR 13, 149–159 (1999).

    Article  CAS  Google Scholar 

  25. Ni, F., Konishi, Y. & Scheraga, H.A., Biochemistry 29, 4479–4489 (1990).

    Article  CAS  Google Scholar 

  26. Ye, J., Esmon, N.L., Esmon, C.T. & Johnson, A.E., J. Biol. Chem. 266, 23016–23021 (1991).

    CAS  PubMed  Google Scholar 

  27. Vuister, G.W. & Bax, A., J. Am. Chem. Soc. 115, 7772–7777 (1993).

    Article  CAS  Google Scholar 

  28. Nooren, I.M.A., et al. Biochemistry 38, 6035–6042 (1999).

    Article  CAS  Google Scholar 

  29. Brünger, A.T. X-PLOR Version 3.1 A System for X-ray Crystallography and NMR (Yale University Press, New Haven, 1988).

  30. Wüthrich, K., NMR of Proteins and Nucleic Acids (John Wiley & Sons, New York, 1986).

  31. Diamond, R., Protein Sci. 1, 1279–1287 (1992).

    Article  CAS  Google Scholar 

  32. Nilges, M., Kuszewski, J. & Brunger, A.T. Computational aspects of the study of biological macromolecules by NMR (Plenum Press, New York, 1991).

  33. Laskowski, R.A., Rullmann, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M., J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Komives.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, M., Sampoli Benitez, B. & Komives, E. Solution structure of the smallest cofactor-active fragment of thrombomodulin. Nat Struct Mol Biol 7, 200–204 (2000). https://doi.org/10.1038/73302

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73302

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing