Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structures of the key anaerobic enzyme pyruvate:ferredoxin oxidoreductase, free and in complex with pyruvate

Abstract

Oxidative decarboxylation of pyruvate to form acetyl–coenzyme A, a crucial step in many metabolic pathways, is carried out in most aerobic organisms by the multienzyme complex pyruvate dehydrogenase. In most anaerobes, the same reaction is usually catalyzed by a single enzyme, pyruvate:ferredoxin oxidoreductase (PFOR). Thus, PFOR is a potential target for drug design against certain anaerobic pathogens. Here, we report the crystal structures of the homodimeric Desulfovibrio africanus PFOR (data to 2.3 Å resolution), and of its complex with pyruvate (3.0 Å resolution). The structures show that each subunit consists of seven domains, one of which affords protection against oxygen. The thiamin pyrophosphate (TPP) cofactor and the three [4Fe–4S] clusters are suitably arranged to provide a plausible electron transfer pathway. In addition, the PFOR–pyruvate complex structure shows the noncovalent fixation of the substrate before the catalytic reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribbon drawings of Desulfovibrio africanus PFOR, made with MOLSCRIPT48 and Raster3D49.
Figure 2: a, Stereoview, shown in the same orientation as Fig. 1a, of one subunit containing 1,231 residues, depicting the structural domains I–VII in different colors.
Figure 3: Ribbon drawings of the seven structural domains of Desulfovibrio africanus PFOR.
Figure 4: Structural comparison of PFOR to the homodimeric transketolase (TK) from baker's yeast22.
Figure 5: Stereo picture of cavities and channels in PFOR.
Figure 6: Binding of the TPP cofactor to PFOR.
Figure 7: Binding of pyruvate to the PFOR active site.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Patel, M.S. & Roche, T.E. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 4, 3224–3233 (1990).

    Article  CAS  Google Scholar 

  2. Kerscher, L. & Oesterhelt, D. Pyruvate : ferredoxin oxidoreductase — new findings on an ancient enzyme. Trends Biochem. Sci. 7, 371–374 (1982).

    Article  CAS  Google Scholar 

  3. Smith, E.T., Blamey, J.M. & Adams, M.W. Pyruvate ferredoxin oxidoreductases of the hyperthermophilic archaeon, Pyrococcus furiosus, and the hyperthermophilic bacterium, Thermatoga maritima, have different catalytic mechanisms. Biochemistry 33, 1008–1016 (1994).

    Article  CAS  Google Scholar 

  4. Uyeda, K. & Rabinowitz, J.C. Pyruvate–ferredoxin oxidoreductase. IV. Studies on the reaction mechanism. J Biol. Chem. 246, 3120–3125 (1971).

    CAS  PubMed  Google Scholar 

  5. Wahl, R.C. & Orme–Johnson, W.H. Clostridial pyruvate oxidoreductase and the pyruvate–oxidizing enzyme specific to nitrogen fixation in Klebsiella pneumoniae are similar enzymes. J. Biol. Chem. 262, 10489–10496 (1987).

    CAS  PubMed  Google Scholar 

  6. Hrdy, I. & Müller, M. Primary structure and eubacterial relationships of the pyruvate:ferredoxin oxidoreductase of the amitochondriate eukaryote Trichomonas vaginalis. J. Mol. Evol. 41, 388–396 (1995).

    Article  CAS  Google Scholar 

  7. Hatchikian, E.C. & LeGall, J. Study of dicarboxylic acid and pyruvate metabolism in sulfate–reducing bacteria. II. Electron transport; final acceptors. Ann. Inst. Pasteur 118, 288–301 (1970).

    CAS  Google Scholar 

  8. Kletzin, A. & Adams, M.W.W. Molecular and phylogenetic characterization of pyruvate and ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima. J. Bacteriol. 178, 248–257 (1996).

    Article  CAS  Google Scholar 

  9. Bock, A.–K., Schönheit, P. & Teixeira, M. The iron–sulfur centers of the pyruvate : ferredoxin oxidoreductase from Methanosarcina barkeri (Fusaro). FEBS Lett. 414, 209–212 (1997).

    Article  CAS  Google Scholar 

  10. Ben Rosenthal, B. et al. Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate protozoan parasite Entamoeba histolytica. J. Bacteriol. 179, 3736–3745 (1997).

    Article  Google Scholar 

  11. Brostedt, E. & Nordlund, S. Purification and partial characterization of a pyruvate oxidoreductase from the photosynthetic bacterium Rhodospirillum rubrum grown under nitrogen–fixing conditions. Biochem. J. 279, 155–158 (1991).

    Article  CAS  Google Scholar 

  12. Menon, S. & Ragsdale, S.W. Unleashing hydrogenase activity in carbon monoxide dehydrogenase/acetyl–CoA synthase and pyruvate:ferredoxin oxidoreductase. Biochemistry 35, 12119–12125 (1996).

    Article  CAS  Google Scholar 

  13. Evans, M.C.W., Buchanan, B.B. & Arnon, D.I. A new ferredoxin–dependent carbon reduction cycle in a photosynthetic bacterium. Proc. Natl. Acad. Sci. USA 55(4), 928–934 (1966).

    Article  CAS  Google Scholar 

  14. Tersteegen, A., Linder, D., Thauer, R.K. & Hedderich, R. Structures and functions of four anabolic 2–oxoacid oxidoreductases in Methanobacterium thermoautotrophicum. Eur. J. Biochem. 242, 862–868 (1997).

    Article  Google Scholar 

  15. Yoon, K.S., Ishii, M., Kodamam, T. & Igarashi, Y. Purification and characterization of pyruvate : ferredoxin oxidoreductase from Hydrogenobacter thermophilus TK–6. Arch. Microbiol. 167, 275–279 (1997).

    Article  CAS  Google Scholar 

  16. Ma, K., Hutchins, A., Sung, S.J. & Adams, M.W.W. Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archeon, Pyrococcus furiosus, functions as a CoA–dependent pyruvate decarboxylase. Proc. Natl. Acad. Sci. USA. 94, 9608–9613 (1997).

    Article  CAS  Google Scholar 

  17. Zhang, Q., Iwasaki, T., Wakagi, T. & Oshima, T. 2–Oxoacid : ferredoxin oxidoreductase from the thermoacidophilic archeon, Sulfolobus sp. Strain 7. J. Biochem. (Tokyo) 120, 587–599 (1996).

    Article  CAS  Google Scholar 

  18. Pieulle, L. et al. Isolation and characterization of the pyruvate – ferredoxin oxidoreductase from the sulfate–reducing bacterium Desulfovibrio africanus. Biochim. Biophys. Acta 1250, 49–59 (1995).

    Article  Google Scholar 

  19. Pieulle, L., Magro, V. & Hatchikian, E.C. Isolation and analysis of the gene encoding the pyruvate–ferredoxin oxidoreductase of Desulfovibrio africanus, production of the recombinant enzyme in Escherichia coli, and effect of carboxy–terminal deletions on its stability. J. Bacteriol. 179, 5684–5692 (1997).

    Article  CAS  Google Scholar 

  20. Matsubara, H. & Saeki, K. Structural and functional diversity of ferredoxins and related proteins. Adv. Inorg. Chem. 38, 223–280 (1992).

    Article  CAS  Google Scholar 

  21. Moulis, J.M., Davasse, V., Meyer, J. & Gaillard, J. Molecular mechanism of pyruvate–ferredoxin oxidoreductases based on data obtained with the Clostridium pasteurianum enzyme. FEBS Lett. 380, 287–290 (1996).

    Article  CAS  Google Scholar 

  22. Lindqvist, Y., Schneider, G., Ermler, U. & Sundström, M. Three–dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5 Å resolution. EMBO J. 11, 2373–2379 (1992).

    Article  CAS  Google Scholar 

  23. Muller, Y.A. et al. A thiamin diphosphate binding fold revealed by comparison of the crystal structures of transketolase, pyruvate oxidase and pyruvate decarboxylase. Structure 1, 95–103 (1993).

    Article  CAS  Google Scholar 

  24. Moser, C.C., Keske, J.M., Farid, R.S. & Dutton, P.L. Nature of biological electron transfer. Nature 355, 796–802 (1992).

    Article  CAS  Google Scholar 

  25. Séry, A. et al. Crystal structure of the ferredoxin I from Desulfovibrio africanus at 2.3 Å resolution. Biochemistry 33, 15408–15417 (1994).

    Article  Google Scholar 

  26. Menon, S. & Ragsdale, S.W. Mechanism of the Clostridium thermoaceticum pyruvate : ferredoxin oxidoreductase : Evidence for the common catalytic intermediacy of the hydroxyethylthiamine pyrophosphate radical. Biochemistry 36, 8484–8494 (1997).

    Article  CAS  Google Scholar 

  27. Pianzzola, M.J., Soubes, M. & Touati, D. Overproduction of the rbo gene product from Desulfovibrio species suppresses all deleterious effects of lack of superoxide dismutase in Escherichia coli. J. Bacteriol. 178, 6736–6742 (1996).

    Article  CAS  Google Scholar 

  28. Johnson, M.S., Zhulin, I.B., Gapuzan, M.E. R. & Taylor, B.L. Oxygen–dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 179, 5598–5601 (1997).

    Article  CAS  Google Scholar 

  29. Kern, D. et al. How thiamine diphosphate is activated in enzymes. Science 275, 67–70 (1997).

    Article  CAS  Google Scholar 

  30. Shin, W., Oh, D.G., Chae, C.H. & Yoon, T.S. Conformational analysis of thiamin–related compounds. A stereochemical model for thiamin catalysis. J. Am. Chem. Soc. 115, 12238–12250 (1993).

    Article  CAS  Google Scholar 

  31. Breslow, R. The mechanism of thiamine action: Predictions from model experiments. Ann. NY Acad. Sci. 98, 445–452 (1962).

    Article  CAS  Google Scholar 

  32. Lobell, M. & Crout, H.G. Pyruvate decarboxylase: A molecular modeling study of pyruvate decarboxylation and acyloin formation. J. Am. Chem. Soc. 118, 1867–1873 (1996).

    Article  CAS  Google Scholar 

  33. Cammack, R., Kerscher, L. & Oesterhelt, D. A stable free radical intermediate in the reaction of 2–oxoacid : ferredoxin oxidoreductase of Halobium halobacterium. FEBS Lett. 118, 271–273 (1980).

    Article  CAS  Google Scholar 

  34. Pieulle, L., Chabriere, E., Hatchikian, C., Fontecilla–Camps, J.C. & Charon, M.H. Crystallization and preliminary crystallographic analysis of the pyruvate:ferredoxin oxidoreductase from Desulfovibrio africanus. Acta Crystallogr. D, in the press.

  35. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  36. Collaborative computational project, number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  37. Hendrickson, W.A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991).

    Article  CAS  Google Scholar 

  38. Sheldrick, G.M. Patterson superposition and ab initio phasing. Meth. Enz. 276, 628–641 (1997).

    Article  CAS  Google Scholar 

  39. Otwinowski, Z. Isomorphous replacement and anomalous scattering. Proc. CCP4 Study Weekend 25–26 January 1991 (compiled by Wolf, W., Evans, P.R. & Leslie, A.G.W.), pp. 60–68 (1991).

  40. Ramakrishnan, V. & Biou, V. Treatment of MAD data as a special case of MIR. Meth. Enz. 276, 538–557 (1997).

    Article  CAS  Google Scholar 

  41. Wang, B.–C. Resolution of phase ambiguity in macromolecular crystallography. Meth. Enz. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  42. Vellieux, F.M.D.A.P., Hunt, J.F., Roy, S. & Read, R.J. DEMON/ANGEL: A suite of programs to carry out density modification. J. Appl. Crystallogr. 28, 347–351 (1995).

    Article  CAS  Google Scholar 

  43. Navaza, J. AMoRe: An automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  44. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  45. Brünger, A.T. X–PLOR version 3.1. A system for X–ray crystallography and NMR. (Yale Univ. Press, New Haven, Connecticut,1992).

  46. Brünger, A.T. Free R value: A novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  Google Scholar 

  47. Jones, T.A. A graphic model building and refinement system for macromolecules. J. Appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  48. Kraulis, P.J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  49. Merrit, E.A. & Bacon, D.J. Raster3D: Photorealistic molecular graphics. Meth. Enz. 277, 505–524 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to N. Forget for her assistance in the purification of the enzyme and to R. Toci for growing the bacteria. We thank J.L. Ferrer (BM02) and A. Thompson (BM14) for help with data collection at European Synchrotron Radiation Facilities. The assistance of M. Roth in the collection and treatment of the MAD data is gratefully acknowledged. This study was supported by the CEA and the CNRS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marie–Helene Charon or Anne Volbeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chabrière, E., Charon, M., Volbeda, A. et al. Crystal structures of the key anaerobic enzyme pyruvate:ferredoxin oxidoreductase, free and in complex with pyruvate. Nat Struct Mol Biol 6, 182–190 (1999). https://doi.org/10.1038/5870

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5870

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing