Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding

Abstract

The structure and dynamics of two partially folded states of apomyoglobin have been characterized at equilibrium using multi-dimensional NMR spectroscopy. Residue-specific measurements of chemical shift and internal dynamics in these states and in the native apoprotein and holoprotein indicate progressive accumulation of secondary structure and increasing restriction of backbone dynamics as the chain collapses to form increasingly compact states. Under weakly folding conditions, the polypeptide fluctuates between unfolded states and local elements of structure that become extended and stabilized as the chain becomes more compact. These results provide a detailed model for molecular events that are likely to occur during folding of myoglobin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Matthews, C.R. Pathways of protein folding. Annu. Rev. Biochem. 62, 653–683 (1993).

    Article  CAS  Google Scholar 

  2. Baldwin, R.L. The nature of protein folding pathways: the classical versus the new view. J. Biomol. NMR 5, 103–109 (1995).

    Article  CAS  Google Scholar 

  3. Fersht, A.R. Characterizing transition states in protein folding: An essential step in the puzzle. Curr. Opin. Struct. Biol. 5, 79–84 (1995).

    Article  CAS  Google Scholar 

  4. Dyson, H.J. & Wright, P.E. Insights into protein folding from NMR. Ann. Rev. Phys. Chem. 47, 369–395 (1996).

    Article  CAS  Google Scholar 

  5. Bryngelson, J.D, Onuchic, J.N, Socci, N.D. & Wolynes, P.G. Funnels, pathways, and the energy landscape of protein folding: A synthesis. Proteins 21, 167–195 (1995).

    Article  CAS  Google Scholar 

  6. Wolynes, P.G., Onuchic, J.N. & Thirumalai, D. Navigating the folding routes. Science 267, 1619–1620 (1995).

    Article  CAS  Google Scholar 

  7. Jennings, P.A. & Wright, P.E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262, 892–896 (1993).

    Article  CAS  Google Scholar 

  8. Loh, S.N., kay M.S. & Baldwin, R.L. Structure and stability of a second molten globule intermediate in the apomyoglobin folding pathway. Proc. Natl. Acad. Sci. USA, 92, 5446–896 (1995).

    Article  CAS  Google Scholar 

  9. Griko, Y.V., Privalov, P.L, Venyaminov, S.Y. & Kutyshenko, V.P. Thermodynamic study of the apomyoglobin structure. J. Mol. Biol. 202, 127–138 (1988).

    Article  CAS  Google Scholar 

  10. Hughson, F.M., Wright, P.E. & Baldwin, R.L. Structural characterization of a partly folded apomyoglobin intermediate. Science 249, 1544–1548 (1990).

    Article  CAS  Google Scholar 

  11. Eliezer, D. et al. The radius of gyration of an apomyoglobin folding intermediate. Science 270, 487–488 (1995).

    Article  CAS  Google Scholar 

  12. Eliezer, D. & Wright, P.E. Is apomyoglobin a molten globule? Structural characterization by NMR. J. Mol. Biol. 263, 531–538 (1996)

    Article  CAS  Google Scholar 

  13. Griko, Y.V. & Privalov, P.L. Thermodynamic puzzle of apomyoglobin unfolding. J. Mol. Biol. 235, 1381–1325 (1994)

    Article  Google Scholar 

  14. Eliezer, D., Jennings, P.A., Dyson, H.J. & Wright, P.E. Populating the equilibrium molten globule state of apomyoglobin under conditions suitable for characterization by NMR. FEBS Lett. 417, 92–96 (1997).

    Article  CAS  Google Scholar 

  15. Wright, P.E., Dyson, H.J. & Lerner, R.A. Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding. Biochemistry 27, 7167–7175 (1988)

    Article  CAS  Google Scholar 

  16. Nishii, I., Kataoka, M., Tokunaga, F. & Goto, Y. Cold denaturation of the molten globule states of apomyoglobin and a profile for protein folding. Biochemistry 33, 4903–4909 (1994).

    Article  CAS  Google Scholar 

  17. Cocco, M.J. & Lecomte, J.TJ. Characterization of hydrophobic cores in apomyoglobin: a proton NMR spectroscopy study. Biochemistry 29, 11067–11072 (1990).

    Article  CAS  Google Scholar 

  18. Lecomte, J.T.J ., Kao, Y.H. & Cocco, M.J. The native state of apomyoglobin described by proton NMR spectroscopy: The A-;B-;G-H interface of wild-type sperm whale apomyoglobin. Proteins 25, 267–285 (1996)

    Article  CAS  Google Scholar 

  19. Jennings, P.A., Stone, M.J. & Wright, P.E. Overexpression of myoglobin and assignment of the amide, Cα and Cβ resonances. J. Biomol. NMR 6, 271–276 (1995).

    Article  CAS  Google Scholar 

  20. Braun, D., Wider, G., & Wuthrich, K. Sequence-corrected 15N ”random coil“ chemical shifts. J. Am. Chem. Soc. 116, 8466–8469 (1994).

    Article  CAS  Google Scholar 

  21. Yao, J., Dyson, H.J., & Wright, P.E. Chemical shift dispersion and secondary structure prediction in unfolded and partly-folded proteins. FEBS Lett. 419, 285–289 (1997).

    Article  Google Scholar 

  22. Zhang, O., Kay, L.E., Shortle, D. & Forman-Kay, J.D. Comprehensive NOE characterization of a partly folded large fragment of staphylococcal nuclease D131D, using NMR methods with improved resolution. J. Mol. Biol. 272, 9–20 (1997).

    Article  CAS  Google Scholar 

  23. Clore, G.M. & Gronenborn, A.M . Multidimensional heteronuclear nuclear magnetic resonance of proteins. Meth. Enz. 239, 349–363 (1994).

    Article  CAS  Google Scholar 

  24. Baum, J., Dobson, C.M., Evans, P.A. & Hanley, C. Characterization of a partly folded protein by NMR methods: studies on the molten globule state of guinea pig a-lactalbumin. Biochemistry 28, 7–13 1998).

    Article  Google Scholar 

  25. Alexandrescu, A.T., Evans, P.A., Pitkeathly, M., Baum, J. & Dobson, C.M. Structure and dynamics of the acid-denatured molten globule state of alpha-lactalbumin: A two-dimensional NMR study. Biochemistry 32, 1707–1718 (1993).

    Article  CAS  Google Scholar 

  26. de Dios, A.C., Pearson, J.G. & Oldfield, E. Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach. Science 260, 1491–1496 (1993).

    Article  CAS  Google Scholar 

  27. Spera, S. & Bax, A. Empirical correlation between protein backbone conformation and Ca and Cfi 13C nuclear magnetic resonance chemical shifts. J. Am. Chem. Soc. 113, 5490–5492 (1991).

    Article  CAS  Google Scholar 

  28. Wishart, D.S. & Sykes, B.D. The 13C chemical-shift index: A simple method for the identification of protein secondary structure using 13C chemical-shift data. J. Biomol. NMR4, 4, 171–180 (1994).

    CAS  Google Scholar 

  29. Wishart, D.S., Bigam, C.G., Holm, A., Hodges, R.S. & Sykes, B.D. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids: I. Investigations of nearest neighbor effects. J. Biomol. NMR 5, 67–81 (1995).

    Article  CAS  Google Scholar 

  30. Wuthrich, K., Billeter, M. & Braun, W. Polypeptide secondary structure determination by nuclear magnetic resonance observation of short proton-proton distances. J. Mol. Biol. 180, 715–740 (1984).

    Article  CAS  Google Scholar 

  31. Waltho, J.P., Feher, V.A., Merutka, G., Dyson, H.J. & Wright, P.E. Peptide models of protein folding initiation sites. 1. Secondary structure formation by peptides corresponding to the G- and H-helices of myoglobin. Biochemistry 32, 6337–6347 (1993).

    CAS  Google Scholar 

  32. Kuriyan, J., Wilz, S., Karplus, M. & Petsko, G.A. X-ray structure and refinement of carbon-monoxy (Fe ll)-myoglobin at 1.5 A resolution. J. Mol. Biol. 192, 133–154 (1986).

    Article  CAS  Google Scholar 

  33. Reymond, M.T., Merutka, G., Dyson, H.J. & Wright, P.E. Folding propensities of peptide fragments of myoglobin. Prot. So. 6, 706–716 (1997).

    Article  CAS  Google Scholar 

  34. Kyte, J., Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982)

    Article  CAS  Google Scholar 

  35. Alexandrescu, A.T. & Shortle, D. Backbone dynamics of a highly disordered 131 residue fragment of staphylococcal nuclease. J. Mol. Biol. 242, 527–546 (1994).

    Article  CAS  Google Scholar 

  36. Muchmore, S.W. et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335–341 (1996).

    Article  CAS  Google Scholar 

  37. Lin, L., Pinker, R.J., Forde, K., Rose, G.D. & Kallenbach, N.R. Molten globular characteristics of the native state of apomyoglobin. Nature Struct. Biol. 1, 447–452 (1994).

    Article  CAS  Google Scholar 

  38. Fontana, A. et al. Probing the conformational state of apomyoglobin by limited proteolysis. J. Mol. Biol. 266, 223–230 (1997).

    Article  CAS  Google Scholar 

  39. Ballew, R.M., Sabelko, J. & Gruebele, M. Direct observation of fast protein folding: The initial collapse of apomyoglobin. Proc. Natl. Acad. Sci. USA 93, 5759–5764 (1996).

    Article  CAS  Google Scholar 

  40. Ballew, R.M., Sabelko, J. & Gruebele, M. Observation of distinct nanosecond and microsecond protein folding events. Nature Struct. Biol. 3, 923–926 (1996).

    Article  CAS  Google Scholar 

  41. Chan, H.S. & Dill, K.A. Origins of structure in globular proteins. Proc. Natl. Acad. Sci. USA 87, 6388–6392 (1990).

    Article  CAS  Google Scholar 

  42. Kataoka, M. et al. Structural characterization of the molten globule and native states of apomyoglobin by solution X-ray scattering. J. Mol. Biol. 249, 215–228 (1995).

    Article  CAS  Google Scholar 

  43. Adler, A.J., Greenfield, N.J. & Fasman, G.D. Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Meth. Enz. 27, 675–735 (1973).

    Article  CAS  Google Scholar 

  44. Dyson, H.J., Ranee, M., Houghten, R.A., Wright, P.E. & Lerner, R.A. Folding of immunogenic peptide fragments of proteins in water solution. II The nascent helix. J. Mol. Biol. 201, 201–217 (1988).

    Article  CAS  Google Scholar 

  45. Barrick, D. & Baldwin, R.L . Three-state analysis of sperm whale apomyoglobin folding. Biochemistry 32, 3790–3796 (1993)

    Article  CAS  Google Scholar 

  46. Gast, K. et al. Compactness of protein molten globules: Temperature-induced structural changes of the apomyoglobin folding intermediate, Eur. Biophys. J. 23, 297–305 (1994)

    CAS  Google Scholar 

  47. Hughson, F.M., Barrick, D. & Baldwin, R.L. Probing the stability of a partly folded apomyoglobin intermediate by site-directed mutagenesis. Biochemistry 30, 4113–4118 (1991)

    Article  CAS  Google Scholar 

  48. Kay, M.S. & Baldwin, R.L. Packing interactions in the apomyoglobin folding intermediate. Nature Struct. Biol. 3, 439–445 (1996).

    Article  CAS  Google Scholar 

  49. Balbach, J. et al. Detection of residue contacts in a protein folding intermediate. Proc. Natal. Acad. Sci. USA 94, 7182–7185 (1997)

    Article  CAS  Google Scholar 

  50. Kay, L.E., Ikura, M., Tschudin, R. & Bax, A. Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J. Magn. Reson. 89, 496–514 (1990)

    CAS  Google Scholar 

  51. Bax & Ikura, M An efficient 3D NMR technique for correlating the proton and 15N backbone amide resonances with the a-carbon of the preceding residue in uniformly 15N/13C enriched proteins. J. Biomol. NMR 1, 99–104 (1991).

    Article  CAS  Google Scholar 

  52. Wittekind, M. & Mueller, L, HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha- and beta-carbon resonances in proteins. J. Magn. Reson. 101, 201–205 (1993).

    Article  CAS  Google Scholar 

  53. Grzesiek, S. & Bax, A Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J. Am. Chem. Soc. 114, 6291–6293 (1992).

    Article  CAS  Google Scholar 

  54. Grzesiek, S. & Bax, A. Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J. Biomol. NMR 3, 185–204 (1993).

    CAS  PubMed  Google Scholar 

  55. Lohr, F. & Ruterjans, H. A new triple-resonance experiment for the sequential assignment of backbone resonances in proteins. J. Biomol. NMR 6, 189–197 (1995).

    Article  CAS  Google Scholar 

  56. Farrow, N.A. et al. Backbone dynamics of a free and a phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984–6003 (1994).

    Article  CAS  Google Scholar 

  57. Brucker, E.A., Olson, J.S., Phillips, G.N., Jr., Dou, Y. & Ikeda-Saito, M. High resolution crystal structures of the deoxy, oxy and aquomet forms of cobalt myoglobin. J. Biol. Chem. 271, 25419–25422 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Jane Dyson or Peter E. Wright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliezer, D., Yao, J., Dyson, H. et al. Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nat Struct Mol Biol 5, 148–155 (1998). https://doi.org/10.1038/nsb0298-148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0298-148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing