Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of an RNA aptamer–protein complex at 2.8 Å resolution

Abstract

The crystal structure, at 2.8 Å resolution, of an RNA aptamer bound to bacteriophage MS2 coat protein has been determined. It provides an opportunity to compare the interactions of MS2 coat protein and wild type operator with those of an aptamer, whose secondary structure differs from the wild type RNA in having a three-base loop (compared to a tetraloop) and an additional base pair between this loop and the sequence-specific recognition element in the stem. The RNA binds in the same location on the coat protein as the wild type operator and maintains many of the same RNA–protein interactions. In order to achieve this, the RNA stem loop undergoes a concerted rearrangement of the 3′ side while leaving the 5′ side and the loop interactions largely unchanged, illustrating the ability of RNA to present similar molecular recognition surfaces from distinct primary and secondary structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Patel, D.J. et al. Structure, recognition and adaptive binding in RNA aptamer complexes. J. Mol. Biol. 272, 645–664 (1997)

    Article  CAS  Google Scholar 

  2. Ye, X., Gorin, A., Ellington, A.D., & Patel, D.J. Deep penetration of an α-helix into a widened RNA major groove in the HIV-1 rev peptide-RNA aptamer complex. Nature Struct. Biol. 3, 1026–1033 (1996)

    Article  CAS  Google Scholar 

  3. Schneider, D., Tuerk, C., & Gold, L. Selection of high affinity RNA ligands to the bacteriophage R17 coat protein. J. Mol. Biol. 228, 862–869 (1992)

    Article  CAS  Google Scholar 

  4. Nieuwlandt, D., Wecker, M., & Gold, L. In vitro selection of RNA ligands to substance-P. Biochemistry 34, 5651–5659 (1995)

    Article  CAS  Google Scholar 

  5. Connell, G.J., Illangesekare, M., & Yarus, M. 3 small ribooligonucleotides with specific arginine sites. Biochemistry 32, 5497–5502 (1993)

    Article  CAS  Google Scholar 

  6. Sassanfar, M., & Szostak, J.W. An RNA motif that binds ATP. Nature 364, 550–555 (1993).

    Article  CAS  Google Scholar 

  7. Ellington, A.D., & Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  Google Scholar 

  8. Jenison, R.D., Gill, S., Pardi, A. & Polishky, B. High resolution molecular discrimination by RNA. Science 263, 1425–1429– (1994).

    Article  CAS  Google Scholar 

  9. Szostah, J.M., & Ellington, A.D. In The RNA world (eds. Gesteland, R.F., & Atkins, J.F.) 511–534 (Cold Spring Harbor Press, New York; 1993)

  10. ValegÅrd, K., Murray, J.B., Stockley, P.G., Stonehouse, N.J., & Liljas, L. Crystal structure of an RNA bacteriophage coat protein-operator complex. Nature 371, 623–626 (1994).

    Article  Google Scholar 

  11. ValegÅrd, K. et al. The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein–RNA interactions. J. Mol. Biol. 270, 724–738 (1997).

    Article  Google Scholar 

  12. Witherell, G.W., Gott, J.M., & Uhlenbeck, O.C. Specific interaction between RNA phage coat protein and RNA. Prog. Nuc. Acid Res. 40, 185–220 (1991).

    Article  CAS  Google Scholar 

  13. Talbot, S.J., Goodman, S., Bates, S.R.E., Fishwick, C.W.G., & Stockley, P.G. Use of synthetic oligoribonucleotides to probe RNA–protein interactions in the MS2 translational operator complex. Nucleic Acids Res. 18, 3521–3528 (1990).

    Article  CAS  Google Scholar 

  14. Stockley, P.G. et al. Probing sequence-specific RNA recognition by the bacteriophage MS2 coat protein. Nucleic Acids Res. 23, 2512–2518 (1995).

    Article  CAS  Google Scholar 

  15. ValegÅrd, K., Liljas, L., Fridborg, K., & Unge, T. The three-dimensional structure of the bacterial virus MS2 capsids. Nature 345, 36–41 (1990).

    Article  Google Scholar 

  16. Peabody, D.S. The RNA binding site of bacteriophage MS2 coat protein. EMBO J. 12, 595–600 (1993).

    Article  CAS  Google Scholar 

  17. Lim, F., & Peabody, D.S. Mutations that increase the affinity of a translational represser for RNA. Nucleic Acids Res. 22, 3748–3752 (1994).

    Article  CAS  Google Scholar 

  18. Stockley, P.G., Stonehouse, N.J., & ValegÅrd, K. Molecular mechanism of RNA phage morphogenesis. Int. J. Biochem. 26, 1249–1260 (1994).

    Article  CAS  Google Scholar 

  19. Lowary, P.T., & Uhlenbeck, O.C. An RNA mutation that increases the affinity of an RNA-protein interaction. Nucleic Acids Res. 15, 10483–10493 (1987).

    Article  CAS  Google Scholar 

  20. Ni, C.-Z. et al. Crystal structure of the MS2 coat protein dimer: implications for RNA binding and virus assembly. Structure 3, 255–263 (1995).

    Article  CAS  Google Scholar 

  21. Spingola, M., & Peabody, D.S. MS2 coat protein mutants which bind Qp RNA. Nucleic Acids Res. 25, 2808–2815 (1997).

    Article  CAS  Google Scholar 

  22. Lim, F., Spingola, M., & Peabody, D.S. Altering the RNA binding specificity of a translational repressor. J. Biol. Chem. 269, 9006–9010 (1994).

    CAS  PubMed  Google Scholar 

  23. Lim, F., Spingola, M., & Peabody, D.S. The RNA-binding site of bacteriophage Qβ coat protein. J. Biol. Chem. 271, 31839–31845 (1996).

    Article  CAS  Google Scholar 

  24. Beckett, D., & Uhlenbeck, O.C. Ribonucleoprotein complexes of R17 coat protein and a translational operator analog. J. Mol. Biol. 204, 927–938 (1988).

    Article  CAS  Google Scholar 

  25. Heus, H.A. RNA aptamers. Nature Struct. Biol. 4, 597–600 (1997).

    Article  CAS  Google Scholar 

  26. Dieckmann, T., Butcher, S.E., Sassanfar, M., Szostak, J.W., & Feigon, J. Mutant ATP-binding RNA aptamers reveal the structural basis for ligand binding. J. Mol. Biol. 273, 467–478 (1997).

    Article  CAS  Google Scholar 

  27. Uhlenbeck, O.C., Pardi, A., & Feigon, J. RNA structure comes of age. Cell 90, 833–840 (1997).

    Article  CAS  Google Scholar 

  28. Cusack, S. 11 down and 9 to go. Nature Struct. Biol. 2, 824–831 (1995).

    Article  CAS  Google Scholar 

  29. Oubridge, C., Ito, N., Evans, P.R., Teo, C.-H., & Nagai, K. Crystal structure at 1.92 Å resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372, 432–438 (1994).

    Article  CAS  Google Scholar 

  30. Mastico, R.A., Talbot, S.J., & Stockley, P.G. Multiple presentation of foreign peptides on the surface of an RNA-free spherical bacteriophage capsid. J. Gen. Virol. 74, 541–548 (1993).

    Article  CAS  Google Scholar 

  31. Stonehouse, N.J., & Stockley, P.G. Effects of amino acid substitution on the thermal stability of MS2 capsids lacking genomic RNA. FEBS Letts. 334, 355–359 (1993).

    Article  CAS  Google Scholar 

  32. ValegÅrd, K., Unge, T., Montelius, I., Strandberg, B., & Fiers W. Purification, crystallization and preliminary X-ray data collection of the bacteriophage MS2. J. Mol. Biol. 190, 587–591 (1986).

    Article  Google Scholar 

  33. Murray, J.B., Collier, A.K., & Arnold, J.R.P. A general purification procedure for chemically synthesised oligoribonucleotides. Anal. Biochem. 218, 177–184 (1994).

    Article  CAS  Google Scholar 

  34. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  35. Golmohammadi, R., ValegÅrd, K., Fridborg, K., & Liljas, L. The refined structure of bacteriophage MS2 at 2.8 Å resolution. J. Mol. Biol. 234, 620–639 (1993).

    Article  CAS  Google Scholar 

  36. Kleywegt, G.J., & Jones, T.A. In From first map to final model (eds Bailey, S., Hubbard, R., & Waller, D.) 59–66 (EPSRC Daresbury Laboratory, Warrington, UK; 1994).

  37. Jones, T.A., Zou, J.-Y, Cowan, S.W., & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. 47, 110–119 (1991).

    Article  Google Scholar 

  38. Brünger, A.T., Kuriyan, J., & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  Google Scholar 

  39. Engh, R.A., & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr. 47, 392–400 (1991).

    Article  Google Scholar 

  40. Parkinson, G., Vojtechovsky, J., Clowney, L., Brünger, AT., & Berman, H.M. New parameters for the refinement of nucleic acid-containing structures. Acta Crystallogr. D52, 57–64 (1996).

    CAS  Google Scholar 

  41. Brünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  Google Scholar 

  42. Jiang, J.-S., & Brünger, A.T. Protein hydration observed by X-ray diffraction: solvation properties of penicillopepsin and neuraminidase crystal structures. J. Mol. Biol. 243, 100–115 (1994).

    Article  CAS  Google Scholar 

  43. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graphics 15, 133–138 (1997).

    Google Scholar 

  44. Ramakrishnan, C. & Ramachandran, G.N. Stereochemical criteria for polypeptide and protein chain conformations. II. Allowed conformations for a pair of peptide units. Biophys J. 5, 909–933 (1965).

    Article  CAS  Google Scholar 

  45. Laskowski, R.A., MacArthur, M.W., Moss, D.S., & Thornton, J.M. PROCHECK: a program to check the stereochemistry of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Convery, M., Rowsell, S., Storehouse, N. et al. Crystal structure of an RNA aptamer–protein complex at 2.8 Å resolution. Nat Struct Mol Biol 5, 133–139 (1998). https://doi.org/10.1038/nsb0298-133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0298-133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing