Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction

An Erratum to this article was published on 01 July 1998

Abstract

Bacterial motility involves switching between the left and right supercoiled states of the flagellar filament. The polymorphism of this assembly of identical flagellin molecules has presented a structural puzzle. Supercoiling has been attributed to coexistence of two conformational states of the 11 nearly axially aligned protofilament strands of subunits. The helical parameters of straight filaments in the left (L) and right (R) lattice states have now been accurately determined by X-ray fiber diffraction. The 9 Å resolution electron density map of the R-type filament, refined from the X-ray data, reveals the interlocked α-helical segments of the core portion, which constitute the inner and outer tubes. While the inner-tube domain interactions remain invariant, the strand joints in the outer tube can switch between the L- and R-state by 2–3 Å axial shifts, which change the strand periodicity of 50 Å by 0.8 Å. This bi-stable quaternary switching results in supercoiling. Based on the measured helical parameters of the L and R lattices and the switching model, the twist and curvature calculated for the ten possible supercoils are in quantitative accord with observed supercoiled forms of flagellar filaments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berg, H.C. & Anderson, R.A. Bacteria swim by rotating their flagellar filaments. Nature 245, 380–382 (1973).

    Article  CAS  Google Scholar 

  2. Silverman, M. & Simon, M. Flagellar rotation and the mechanism of bacterial motility. Nature 249, 73–74 (1974).

    Article  CAS  Google Scholar 

  3. Larsen, S.H., Reader, R.W., Kort, E.N., Tso, W.W. & Adler, J. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249, 74–77 (1974).

    Article  CAS  Google Scholar 

  4. Macnab, R.M. & Ornston, M.K. Normal-to-curly flagellar transitions and their role in bacterial tumbling, stabilization of an alternative quaternary structure by mechanical force. J. Mol. Biol. 112, 1–30 (1977).

    Article  CAS  Google Scholar 

  5. Leifson, E. Atlas of bacterial flagellation. (Academic Press, New–York; 1960).

    Book  Google Scholar 

  6. lino, T. & Mitani, M. Flagella-shape mutants in Salmonella. J. Gen. Microbiol. 44, 27–40 (1966).

    Article  Google Scholar 

  7. Martinez, R.J., Ichiki, A.T., Lundh, N.P. & Tronick, S. R. Single amino acid substitution responsible for altered flagellar morphology. J. Mol. Biol. 34, 559–564 (1968).

    Article  CAS  Google Scholar 

  8. Asakura, S. & lino, T. Polymorphism of Salmonella flagella as investigated by means of in vitro copolymerization of flagellins derived from various strains. J. Mol. Biol. 4, 251–268 (1972).

    Article  Google Scholar 

  9. lino, T., Oguchi, T. & Kuroiwa, T. Polymerization in flagellar-shape mutants of Salmonella typhimurium. J. Gen. Microbiol. 81, 37–45 (1974).

    Article  Google Scholar 

  10. Hyman, H.C. & Trachtenberg, S. Point mutations that lock Salmonella typhimurium flagellar filaments in the straight right-handed and left-handed form and their relationship to filament superhelicity. J. Mol. Biol. 220, 79–88 (1991).

    Article  CAS  Google Scholar 

  11. Kanto, S., Okino, H., Aizawa, S.-l. & Yamaguchi, S. Amino acids responsible for flagellar shape are distributed in terminal regions of flagellin. J. Mol. Biol. 219, 471–480 (1991).

    Article  CAS  Google Scholar 

  12. Kamiya, R. & Asakura, S. Helical transformations of Salmonella flagella in vitro. J. Mol. Biol. 106, 167–186 (1976).

    Article  CAS  Google Scholar 

  13. Kamiya, R. & Asakura, S. Flagellar transformations at alkaline pH. J. Mol. Biol. 108, 513–518 (1977).

    Article  Google Scholar 

  14. Hotani, H. Micro-video study of moving bacterial flagellar filaments III. Cyclic transformation induced by mechanical force. J. Mol. Biol. 156, 791–806 (1982).

    Article  CAS  Google Scholar 

  15. ÓBrien, E.J. & Bennett, P.M. Structure of straight flagella from a mutant Salmonella. J. Mol. Biol. 70, 133–152 (1972).

    Article  Google Scholar 

  16. Asakura, S. Polymerization of flagellin and polymorphism of flagella. Advan. Biophys. 1, 99–155 (1970).

    CAS  Google Scholar 

  17. Calladine, C.R. Construction of bacterial flagella. Nature 225, 121–124 (1975).

    Article  Google Scholar 

  18. Calladine, C.R. Design requirements for the construction of bacterial flagella. J. Theoret. Biol. 57, 469–489 (1976).

    Article  CAS  Google Scholar 

  19. Calladine, C.R. Change of waveform in bacterial flagella: The role of mechanicsat the molecular level. J. Mol. Biol. 118, 457–479 (1978).

    Article  CAS  Google Scholar 

  20. Kamiya, R., Asakura, S., Wakabayashi, K. & Namba, K. Transition of bacterial flagella from helical to straight forms with different subunit arrangements. J. Mol. Biol. 131, 725–742 (1979).

    Article  CAS  Google Scholar 

  21. Kamiya, R., Asakura, S. & Yamaguchi, S. Formation of helical filaments by copolymerization of two types of ‘straight’ flagellins. Nature 286, 628–630 (1980).

    Article  CAS  Google Scholar 

  22. Mimori, Y. et al. The structure of the R-type straight flagellar filament of Salmonella at 9 Å resolution by electron cryomicroscopy. J. Mol. Biol. 249, 69–87 (1995).

    Article  CAS  Google Scholar 

  23. Morgan, D.G., Owen, C., Melanson, L A. & DeRosier, D. J. Structure of bacterial flagellar filaments at 11 Å resolution: Packing of the α-helices. J. Mol. Biol. 249, 88–110 (1995).

    Article  CAS  Google Scholar 

  24. Mimori-Kiyosue, Y., Vonderviszt, F., Yamashita, I., Fujiyoshi, Y. & Namba, K. Direct interaction of flagellin termini essential for polymorphic ability of flagellar filament. Proc. Natl. Acad. Sci. USA. 93, 15108–15113 (1996).

    Article  CAS  Google Scholar 

  25. Vonderviszt, F., Kanto, S., Aizawa, S.-l. & Namba, K. Terminal regions of flagellin are disordered in solution. J. Mol. Biol. 209, 127–133 (1989).

    Article  CAS  Google Scholar 

  26. Mimori-Kiyosue, Y., Vonderviszt, F. & Namba, K. Locations of terminal segments of flagellin in the filament structure and their roles in polymorphism and polymerization. J. Mol. Biol. 270, 222–237 (1997).

    Article  CAS  Google Scholar 

  27. Vonderviszt, F., Aizawa, S.-l. & Namba, K. Role of the disordered terminal regions of flagellin in filament formation and stability. J. Mol. Biol. 221, 1461–1474 (1991).

    Article  CAS  Google Scholar 

  28. Yamashita, I., Vonderviszt, F., Noguchi, T. & Namba, K. Preparing well-oriented sols of straight flagellar filaments for X-ray fiber diffraction. J. Mol. Biol. 217, 293–302 (1991).

    Article  CAS  Google Scholar 

  29. Namba, K., Yamashita, I. & Vonderviszt, F. Structure of the core and central channel of bacterial flagella. Nature 342, 648–654 (1989).

    Article  CAS  Google Scholar 

  30. Yamashita, I. et al. Radial mass analysis of the flagellar filament of Salmonella: Implications for subunit folding. J. Mol. Biol. 253, 547–558 (1995).

    Article  CAS  Google Scholar 

  31. Namba, K. & Stubbs, G. Solving the phase problem in fiber diffraction. Application to tobacco mosaic virus at 3.6 Å resolution. Ada Crystallogr. A41, 252–262 (1985).

    Article  CAS  Google Scholar 

  32. Namba, K. & Vonderviszt, F. Molecular architecture of bacterial flagellum. Quart Rev. Biophys. 30, 1–65 (1997).

    Article  CAS  Google Scholar 

  33. Makowski, L. Processing of X-ray diffraction data from partially oriented specimens. J. Appl. Crystallogr. 11, 273–283 (1978).

    Article  CAS  Google Scholar 

  34. Hasegawa, K., Yamashita, I. & Namba, K. Quasi- and non-equivalence in the structure of bacterial flagellar filament. Biophys. J. in the press.

  35. Kamiya, R., Hotani, H. & Asakura, S. Polymorphic transition in bacterial flagella. Symp. Soc. Exp. Biol. 35, 53–76 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, l., Hasegawa, K., Suzuki, H. et al. Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction. Nat Struct Mol Biol 5, 125–132 (1998). https://doi.org/10.1038/nsb0298-125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0298-125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing