Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The cavity in the hydrophobic core of Myb DNA-binding domain is reserved for DNA recognition and trans-activation

Abstract

The DNA-binding domain of Myb consists of three imperfect repeats, R1, R2 and R3, each containing a helix-turn-helix motif variation. Among these repeats, R2 has distinct characteristics with high thermal instability. The NMR structure analysis found a cavity inside the hydrophobic core of R2 but not in R1 or R3. Here, we show that R2 has slow conformational fluctuations, and that a cavity-filling mutation which stabilizes the R2 structure significantly reduces specific Myb DNA-binding activity and trans-activation. Structural observations of the free and DNA-complexed states suggest that the implied inherent conformational flexibility of R2, associated with the presence of the cavity, could be important for DNA recognition by Myb.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fersht, A. Enzyme Structure and Mechanism (Freeman, New York, 1985).

    Google Scholar 

  2. Ringe, D. & Petsko, G.A. Study of protein dynamics. Methods Enzymol. 131, 389–433 (1986).

    Article  CAS  Google Scholar 

  3. Karplus, M. Internal dynamics of proteins. Methods Enzymol. 131, 283–307 (1986).

    Article  CAS  Google Scholar 

  4. Gerstein, M., Lesk, A.M. & Chothia, C. Structural mechanisms for domain movements in proteins. Biochemistry 33, 6739–6749 (1994).

    Article  CAS  Google Scholar 

  5. Terwilliger, T.C. Engineering the stability and function of gene V protein. Adv. Prot. Chem. 46, 177–215 (1995).

    CAS  Google Scholar 

  6. Matthews, B.W. Structural and genetic analysis of protein stability. Annu. Rev. Biochem. 62, 139–160 (1993).

    Article  CAS  Google Scholar 

  7. Shoichet, B.K., Baase, W.A., Kuroki, R. & Matthews, B.W. A relationship between protein stability and protein function. Proc. Natl. Acad. Sci. USA 92, 452–456 (1995).

    Article  CAS  Google Scholar 

  8. Frauenfelder, H., Sligar, S.G. & Wolynes, P.G. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991).

    Article  CAS  Google Scholar 

  9. Wilson, I.A. & Stanfield, R.L. Antibody-antigen interactions: new structures and new conformational changes. Curr. Opin. Struct. Biol. 4, 857–867 (1994).

    Article  CAS  Google Scholar 

  10. Wagner, G. NMR relaxation and protein mobility. Curr. Opin. Struct. Biol. 3, 748–754 (1993).

    Article  CAS  Google Scholar 

  11. Graf, T. Myb: A transcriptional activator linking proliferation and differentiation in hematopoietic cells. Curr. Opin. Gen. Dev. 2, 249–255 (1992).

    Article  CAS  Google Scholar 

  12. Lüscher, B. & Eisenman, R.N. New light on Myc and Myb. Part II. Myb. Genes Dev. 4, 2235–2241 (1990).

    Article  Google Scholar 

  13. Biedenkapp, H., Borgmeyer, U., Sippel, A.E. & Klempnauer, K.-H. Viral myb oncogene encodes a sequence-specific DNA binding activity. Nature 335, 835–837 (1988).

    Article  CAS  Google Scholar 

  14. Weston, K. Extension of the DNA binding consensus of the chicken c-Myb and v-Myb proteins. Nucl. Acids Res. 20, 3043–3049 (1992).

    Article  CAS  Google Scholar 

  15. Tanikawa, J. et al. Recognition of specific DNA sequences by the c-myb proto-oncogene product: Role of three repeat units in the DNA-binding domain. Proc. Natl. Acad. Sci. USA 90, 9320–9324 (1993).

    Article  CAS  Google Scholar 

  16. Sakura, H. et al. Delineation of three functional domains of the transcriptional activator encoded by the c-myb proto-oncogene. Proc. Natl. Acad. Sci. USA 86, 5758–5762 (1989).

    Article  CAS  Google Scholar 

  17. Ogata, K. et al. Solution structure of a DNA-binding unit of Myb: a helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core. Proc. Natl. Acad. Sci. USA 89, 6428–6432 (1992).

    Article  CAS  Google Scholar 

  18. Ogata, K. et al. Comparison of the free and DNA-complexed forms of the DNA-binding domain from c-Myb. Nature Struct. Biol. 2, 309–320 (1995).

    Article  CAS  Google Scholar 

  19. Ogata, K. et al. Solution structure of a specific DNA complex of the Myb DNA–binding domain with cooperative recognition helices. Cell 79, 639–648 (1994).

    Article  CAS  Google Scholar 

  20. Sarai, A. et al. Thermal stability of the DNA-binding domain of the Myb oncoprotein. Biochemistry 32, 7759–7764 (1993).

    Article  CAS  Google Scholar 

  21. Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A. & Torchia, D.A. Pulse sequences for removal of the effects of cross correlation between dipolar and chemical-shift anisotropy relaxation mechanisms on the measurement of heteronuclear T1 and T2 values in proteins. J. Magn. Reson. 97, 359–375 (1992).

    CAS  Google Scholar 

  22. Kay, L.E., Torchia, D.A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972–8979 (1989).

    Article  CAS  Google Scholar 

  23. Peng, J.W., Thanabal, V. & Wagner, G. 2D heteronuclear NMR measurements of spin-lattice relaxation times in the rotating frame of X nuclei in heteronuclear HX spin systems. J. Magn. Reson. 94, 82–100 (1991).

    CAS  Google Scholar 

  24. Szyperski, T., Luginbühl, P., Otting, G., Güntert, P. & Wüthrich, K. Protein dynamics studied by rotating frame 15N spin relaxation times. J. Biomol. NMR 3, 151–164 (1993).

    CAS  Google Scholar 

  25. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).

    Article  CAS  Google Scholar 

  26. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. Chem. Soc. 104, 4559–4570 (1982).

    Article  CAS  Google Scholar 

  27. Clore, G.M. et al. Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation in proteins. J. Am. Chem. Soc. 112, 4989–4991 (1990).

    Article  CAS  Google Scholar 

  28. Clore, G.M., Driscoll, P.C., Wingfield, P.T. & Gronenborn, A.M. Analysis of the backbone dynamics of interleukin-1β using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. Biochemistry 29, 7387–7401 (1990).

    Article  CAS  Google Scholar 

  29. Eriksson, A.E. et al. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255, 178–183 (1992).

    Article  CAS  Google Scholar 

  30. Richards, F.M. Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng. 6, 151–176 (1977).

    Article  CAS  Google Scholar 

  31. Evans, J.L., Moore, T.L., Kuehl, W.M., Bender, T. & Ting, J.P. Functional analysis of c-Myb protein in T-lymphocytic cell lines shows that it trans-activates the c-myc promoter. Mol. Cell Biol. 10, 5747–5752 (1990).

    Article  CAS  Google Scholar 

  32. Zobel, A. et al. Interaction of the v-and c-Myb proteins with regulatory sequences of the human c-myc gene. Oncogene 6, 1397–1407 (1991).

    CAS  PubMed  Google Scholar 

  33. Nakagoshi, H., Kanei-lshii, C., Sawazaki, T., Mizuguchi, G. & Ishii, S. Transcriptional activation of the c-myc gene by the c-myb and B-myb gene products. Oncogene 7, 1233–1240 (1992).

    CAS  PubMed  Google Scholar 

  34. Haigh, C.W. & Mallion, R.B. Ring current theories in nuclear magnetic resonance. Prog. NMR Spectrosc. 13, 303–344 (1980).

    Article  Google Scholar 

  35. Ösapay, K. & Case, D.A. A new analysis of proton chemical shift in proteins. J.Am. Chem. Soc. 113, 9436–9444 (1991).

    Article  Google Scholar 

  36. Press, W.H., Flannery, B.P., Teukolsky, S.A. & Vetterling, W.T. Numerical Recipes in FORTRAN 2nd ed. (Cambridge Univ. Press, Cambridge, 1993).

    Google Scholar 

  37. Constantine, K.L. et al. Characterization of the backbone dynamics of an anti-digoxin antibody VL domain by inverse detected 1H-15N NMR: Comparisons with X-ray data for the Fab. Proteins 15, 290–311 (1993).

    Article  CAS  Google Scholar 

  38. Barbato, G., Ikura, M., Kay, L.E., Pastor, R.W. & Bax, A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry 31, 5269–5278 (1992).

    Article  CAS  Google Scholar 

  39. Brüschweiler, R., Liao, X. & Wright, P.E. Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. Science 268, 886–889 (1995).

    Article  Google Scholar 

  40. Macura, S. & Ernst, R.R. Elucidation of cross relaxation in liquids by two-dimensional NMR spectroscopy. Mol. Phys. 41, 95–117 (1980).

    Article  CAS  Google Scholar 

  41. Messerle, B.A., Wider, G., Otting, G., Weber, C. & Wüthrich, K. Solvent suppression using a spin lock in 2D and 3D NMR spectroscopy with H2O solutions. J. Magn. Reson. 85, 608–613 (1989).

    CAS  Google Scholar 

  42. Kay, L.E., Marion, D. & Bax, A. Practical aspects of 3D heteronuclear NMR of proteins. J. Magn. Reson. 84, 72–84 (1989).

    CAS  Google Scholar 

  43. Marion, D. et al. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence spectroscopy: Application to interleukin 1β. Biochemistry 28, 6150–6156 (1989).

    Article  CAS  Google Scholar 

  44. Frenkiel, T., Bauer, C., Carr, M.D., Birdsall, B. & Feeney, J. HMQC-NOESY-HMQC, a three-dimensional NMR experiment which allows detection of nuclear Overhauser effects between protons with overlapping signals. J. Magn. Reson. 90, 420–425 (1990).

    CAS  Google Scholar 

  45. Ikura, M., Bax, A., Clore, G.M. & Gronenborn, A.M. Detection of nuclear Overhauser effects between degenerate amide proton resonances by heteronuclear three-dimensional nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 112, 9020–9022 (1990).

    Article  CAS  Google Scholar 

  46. Kanei-lshii, C. et al. Transactivation and transformation by Myb are negatively regulated by a leucine-zipper structure. Proc. Natl. Acad. Sci. U.S.A. 89, 3088–3092 (1992).

    Article  Google Scholar 

  47. Nakagoshi, H., Nagase, T., Kanei-Ishii, C., Ueno, Y. & Ishii, S. Binding of the c-myb proto-oncogene product to the simian virus 40 enhancer stimulates transcription. J. Biol. Chem. 265, 3479–3483 (1990).

    CAS  PubMed  Google Scholar 

  48. Weiner, S.J. et al. A new force field for molecular simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106, 765–784 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogata, K., Kanei-Ishii, C., Sasaki, M. et al. The cavity in the hydrophobic core of Myb DNA-binding domain is reserved for DNA recognition and trans-activation. Nat Struct Mol Biol 3, 178–187 (1996). https://doi.org/10.1038/nsb0296-178

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0296-178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing