Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

X-ray structure of an anti-fungal chitosanase from streptomyces N174

Abstract

We report the 2.4 Å X-ray crystal structure of a protein with chitosan endo-hydrolase activity isolated from Streptomyces N174. The structure was solved using phases acquired by SIRAS from a two-site methyl mercury derivative combined with solvent flattening and non-crystallographic two-fold symmetry averaging, and refined to an R-factor of 18.5%. The mostly α-helical fold reveals a structural core shared with several classes of lysozyme and barley endochitinase, in spite of a lack of shared sequence. Based on this structural similarity we postulate a putative active site, mechanism of action and mode of substrate recognition. It appears that Glu 22 acts as an acid and Asp 40 serves as a general base to activate a water molecule for an SN2 attack on the glycosidic bond. A series of amino-acid side chains and backbone carbonyl groups may bind the polycationic chitosan substrate in a deep electronegative binding cleft.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sandford, P. Chitosan: Commercial uses and potential applications. in Chitin and Chitosan (eds Skåjk-Braek, G., Anthonsen, T. & Sandford, P.) 51–69 (Elsevier Applied Science, London, 1989).

    Google Scholar 

  2. Bruck, H.M., Nash, G., Foley, F.D. & Pruiti, B.A., Jr Opportunistic fungal infections of the burn wound with Phycomyces and Aspergillus. Arch. Surgery 102, 476–482 (1971).

    Article  CAS  Google Scholar 

  3. Barnicki-Garcia, S. & Nickerson, W.J. Isolation, composition, and structure of cell walls of filamentous and yeast-like forms of. Mucor rouxii Biochim. Biophys. Acta 58, 102–119 (1962).

    Article  Google Scholar 

  4. El Ghaouth, A., Arul, J., Grenier, J. & Asselin, A. Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits. Phytopathology 82, 398–402 (1992).

    Article  CAS  Google Scholar 

  5. Hadwiger, L.A., Fristensky, B. & Riggleman, R.C. in Chitin, Chitosan, and Related Enzymes (ed. Zikakis, J. P.) 291–302 (Academic Press, Orlando, 1984).

    Book  Google Scholar 

  6. Davis, B. & Eveleigh, D.E. in Chitin, Chitosan, and Related Enzymes (ed. Zikakis, J. P.) 291–302 (Academic Press, Orlando, 1984).

    Google Scholar 

  7. El Ouakfaoui, S. & Asselin, A. Diversity of chitosanase activity in cucumber. Plant Science 85, 33–41 (1992).

    Article  CAS  Google Scholar 

  8. Boucher, I., Dupuy, A., Vidal, P., Neugebauer, W.A. & Brzezinski, R. Purification and characterization of a chitosanase from Streptomyces N174. Appl. Microb. Biotechnol. 38, 188–193 (1992).

    Article  CAS  Google Scholar 

  9. Fink, D., Boucher, I., Denis, F. & Brzezinski, R. Cloning and expression in Streptomyces lividans of a chitosanase-encoding gene from the actinomycete Kitasatosporia N174 isolated from soil. Biotech. Lett. 13, 845–850 (1991).

    Article  CAS  Google Scholar 

  10. Masson, J.-Y., Denis, F. & Brzezinski, R. Primary sequence of the chitosanase from Streptomyces sp. strain N174 and comparison with other endoglycosidases. Gene 140, 103–107 (1994).

    Article  CAS  Google Scholar 

  11. Henrissat, B. & Bairoch, A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293, 781–788 (1993).

    Article  CAS  Google Scholar 

  12. Ando, A., Noguchi, K., Yanagi, M., Shinoyama, H., Kagawa, Y., Hirata, H., Yabuki, M. & Fujii, T. Primary structure of chitosanase produced by Bacillus circulans MH-K1. J. Gen. Appl. Microbiol. 38, 135–144 (1992).

    Article  CAS  Google Scholar 

  13. Marcotte, E., Hart, P.J., Boucher, I., Brzezinski, R. & Robertus, J.D. Crystallization of a chitosanase from Streptomyces N174. J. Molec. Biol. 232, 995–996 (1993).

    Article  CAS  Google Scholar 

  14. Lüthy, R., Bowie, J.U. & Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature 356, 83–85 (1992).

    Article  Google Scholar 

  15. Matthews, B.W. & Remington, S.J. The three dimensional structure of 39. the lysozyme from bacteriophage T4. Proc. Natl. Acac. Sci. U.S.A. 71, 4178–4182 (1974).

    Article  CAS  Google Scholar 

  16. Rossmann, M.G. & Argos, P. Exploring structural homology of proteins. J. Molec. Biol. 105, 75–96 (1976).

    Article  CAS  Google Scholar 

  17. Matthews, B.W., Grütter, M.G., Anderson, W.F. & Remington, S.J. Common precursor of lysozymes of hen egg-white and bacteriophage T4. Nature 290, 334–335 (1981).

    Article  CAS  Google Scholar 

  18. Grütter, M.G., Weaver, L.H. & Matthews, B.W. Goose lysozyme structure: an evolutionary link between hen and bacteriophage lysozymes? Nature 303, 828–831 (1983).

    Article  Google Scholar 

  19. Hart, P.J., Monzingo, A.F., Ready, M.P., Ernst, S.R. & Robertus, J.D. Crystal structure of an endochitinase from Hordeum vulgare L. seeds. J. Molec. Biol. 229, 189–193 (1993).

    Article  CAS  Google Scholar 

  20. Holm, L. & Sander, C. Structural similarity of plant chitinase and lysozymes from animals and phage. FEBS Lett. 340, 129–132 (1994).

    Article  CAS  Google Scholar 

  21. Hart, P.J., Pfluger, H.D., Monzingo, A.F., Hollis, T. & Robertus, J.D. The refined crystal structure of an endochitinase from Hordeum vulgare L. seeds at 1.8 Å resolution. J. Molec. Biol. 248, 402–413 (1995).

    Article  CAS  Google Scholar 

  22. Monzingo, A.F., Marcotte, E.M., Hart, P.J. & Robertus, J.D. Chitinase, chitosanases, and lysozymes can be divided into procaryotic and eukaryotic families sharing a conserved core. Nature Struct. Biol. 3, 133–140 (1996).

    Article  CAS  Google Scholar 

  23. Kelly, J.A., Sielecki, A.R., Sykes, BD., James, M.N.G. & Phillips, D.C. X-ray crystallography of the binding of the bacterial cell wall trisaccharide NAM-NAG-NAM to lysozyme. Nature 282, 875–878 (1979).

    Article  CAS  Google Scholar 

  24. Ford, L.O., Johnson, L.N., Machin, P.A., Phillips, D.C. & Tjian, R. Crystal structure of a lysozyme-tetrasaccharide lactone complex. J. Molec. Biol. 88, 349–371 (1974).

    Article  CAS  Google Scholar 

  25. Blake, C.C.F., Koenig, D.F., Mair, G.A., North, A.C.T., Phillips, D.C. & Sarma, V.R. Structure of hen egg-white lysozyme. Nature 206, 757–761 (1965).

    Article  CAS  Google Scholar 

  26. Imoto, I., Johnson, L.N., Machin, P.A., Phillips, D.C. & Rupley, J.A. in The Enzymes Vol. 7 (ed. Boyer, P.) 665–868 (Academic Press, New York, 1972).

    Google Scholar 

  27. Matthews, B.W., Remington, S.J., Grütter, M.G. & Anderson, W.F. Relation between hen egg white lysozyme and bacteriophage T4 lysozyme: Evolutionary implications. J. Molec. Biol. 147, 545–558 (1981).

    Article  CAS  Google Scholar 

  28. Bennet, A.J. & Sinnott, M.L. Complete kinetic isotope effect description of transition states for acid-catalyzed hydrolyses of methyl α- and β-glucopyranosides. J. Am. Chem. Soc. 108, 72–87 (1986).

    Article  Google Scholar 

  29. Amyes, T.L. & Jencks, W.P. Lifetimes of oxocarbenium ions in aqueous solution from common ion inhibition of the solvolysis of α-azido ethers by added azide ion. J. Am. Chem. Soc. 111, 78–88 (1989).

    Google Scholar 

  30. Withers, S.G., Warren, R.A.J., Street, I.P., Rupitz, K., Kempton, J.B. & Aebersold, R. Unequivocal demonstration of the involvement of a glutamate residue as a nucleophile in the mechanism of a “retaining” glycosidase. J. Am. Chem. Soc. 112, 5887–5889 (1990).

    Article  CAS  Google Scholar 

  31. Sinnott, M.L. Catalytic mechanisms of enzymic glycosyl transfer. Chem. Rev. 90, 1171–1202 (1990).

    Article  CAS  Google Scholar 

  32. Kuroki, R., Weaver, L.H. & Matthews, B.W. A covalent enzyme-substrate intermediate with saccharide distortion in a mutant T4 lysozyme. Science 262, 2030–2033 (1993).

    Article  CAS  Google Scholar 

  33. Fukamizo, T., Koga, D. & Goto, S. Comparative biochemistry of chitinases -anomeric form of the reaction products. Biosci. Biotech. Biochem. 59, 311–313 (1995).

    Article  CAS  Google Scholar 

  34. Wang, Q., Graham, R.W., Trimbur, D., Warren, R.A.J. & Withers, S.G. Changing enzymatic reaction mechanisms by mutagenesis: conversion of a retaining glucosidase to an inverting enzyme. J. Am. Chem. Soc. 116, 11594–11595 (1994).

    Article  CAS  Google Scholar 

  35. McCarter, J.D. & Withers, S.G. Mechanisms of enzymatic glycoside hydrolysis. Curr. Op. Struct. Biol. 4, 885–892 (1994).

    Article  CAS  Google Scholar 

  36. Hadfield, A.T. et al. Crystal structure of the mutant D52S hen egg white lysozyme with an oligosaccharide product. J. Molec. Biol. 243, 856–872 (1994).

    Article  CAS  Google Scholar 

  37. Weaver, L.H., Grütter, M.G. & Matthews, B.W. The refined structures of goose lysozyme and its complex with a bound trisaccharide show the goose-type lysozymes lack a catalytic aspartate residue. J. Molec. Biol. 245, 54–68 (1995).

    Article  CAS  Google Scholar 

  38. Hamlin, R. Multiwire area X-ray diffractometers. Meth. Enzymol. 114, 416–452 (1985).

    Article  CAS  Google Scholar 

  39. Xuong, N.H., Nielson, C., Hamlin, R. & Anderson, D. Strategies for data collection from protein crystals using a multiwire counter area detector diffractometer. J. Appl. Crystallogr. 18, 342–350 (1985).

    Article  Google Scholar 

  40. Howard, A.J., Nielsen, C. & Xuong, N.H. Software for a diffractometer with multiwire area detector. Methods Enzymol. 114, 453–472 (1985).

    Google Scholar 

  41. Wang, B.-C. Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  42. Jones, T.A. in Computational Crystallography (ed. Sayre, D.) 303–317 (Oxford University, Oxford, 1982).

    Google Scholar 

  43. Bricogne, G. Methods and programs for direct-space exploration of geometric redundancies. Acta Crystallogr. A32, 832–847 (1976).

    Article  CAS  Google Scholar 

  44. Tanaka, N. Representation of the fast-rotation function in a polar coordinate system. Acta Crystallogr. A33, 191–193 (1977).

    Article  Google Scholar 

  45. Sussman, J.L. Constrained-restrained least squares (CORELS) refinement of proteins and nucleic acids. Meth. Enzymol. 115, 271–302 (1985).

    Article  CAS  Google Scholar 

  46. Brünger, A.T. in Crystallographic Computing 4: Techniques and New Technologies (eds Isaacs, N. W. & Taylor, M. R.) 126–140 (Clarendon Press, Oxford, 1988).

    Google Scholar 

  47. Rutenber, E. et al. Crystallographic refinement of ricin to 2.5 Å. Prot. Struct. Funct. Genet. 10, 240–250 (1991).

    Article  CAS  Google Scholar 

  48. Sim, G.A. The distribution of phase angles for structures containing heavy atoms. Acta. Crystallogr. 12, 813–815 (1959).

    Article  CAS  Google Scholar 

  49. Monzingo, A.F., Collins, E.J., Ernst, S.R., Irvin, J.D. & Robertus, J.D. The 2. 5 Å structure of pokeweed antiviral protein. J. Molec. Biol. 233, 705–715 (1993).

    Article  CAS  Google Scholar 

  50. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons. Prot. Struct. Funct. Genet. 11, 281–293 (1991).

    Article  CAS  Google Scholar 

  51. Kraulis, P.J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcotte, E., Monzingo, A., Ernst, S. et al. X-ray structure of an anti-fungal chitosanase from streptomyces N174. Nat Struct Mol Biol 3, 155–162 (1996). https://doi.org/10.1038/nsb0296-155

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0296-155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing