Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exploring the allowed sequence space of a membrane protein

Abstract

We present a comprehensive view of the tolerance of a membrane protein to sequence substitution. We find that the protein, diacylglycerol kinase from Escherichia coli, is extremely tolerant to sequence changes with three-quarters of the residues tolerating non-conservative changes. The conserved residues are distributed with approximately the same frequency in the soluble and transmembrane portions of the protein, but the most critical active-site residues appear to reside in the second cytoplasmic domain. It is remarkable that a unique structure of the membrane embedded portion of the protein can be encoded by a sequence that is so tolerant to substitution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bowie, J.U., Reidhaar-Olson, J.F., Lim, W.A. & Sauer, R.T. Decipering the message in protein sequences: tolerance to amino acid substitution. Science 247, 1306–1310 (1990).

    Article  CAS  Google Scholar 

  2. Loomis, C., Walsh, J. & Bell, R. sn-1,2-Diacylglycerol kinase of Escherichia coli. J. Biol. Chem. 260, 4091–4097 (1985).

    CAS  PubMed  Google Scholar 

  3. Walsh, J. & Bell, R. sn-1,2-diacylglycerol kinase of Escherichia coli: Mixed micellar analysis of the phospholipid cofactor requirement and divalent cation dependence. J. Biol. Chem. 261, 6239–6247 (1986).

    CAS  PubMed  Google Scholar 

  4. Walsh, J., Bell, R. sn-1,2-diacylglycerol kinase of Escherichia coli: structural and kinetic analysis of the lipid cofactor dependence. J. Biol. Chem. 261, 15062–15069 (1986).

    CAS  PubMed  Google Scholar 

  5. Walsh, J., Fahrner, L. & Bell, R. sn-1,2-diacylglycerol kinase of Escherichia coli: Diacylglycerol analogues define specificity and mechanism. J. Biol. Chem. 265, 4374 (1990).

    CAS  PubMed  Google Scholar 

  6. Smith, R., O'Toole, J., Maguire, M. & Sanders, C. Membrane topology of Escherichia coli diacylglycerol kinase. J. Bact. 176, 5459–5465 (1994).

    Article  CAS  Google Scholar 

  7. Bowie, J.U., Sauer, R.T. Identifying determinants of folding and activity for a protein of unknown structure. Proc. Natl. Acad. Sci. USA. 86, 2152–2156 (1989).

    Article  CAS  Google Scholar 

  8. Raetz, C. & Newman, K. Neutral lipid accumulation in the membranes of Escherichia coli mutants lacking diglyceride kinase. J. Biol. Chem. 253, 3882–3887 (1978).

    CAS  PubMed  Google Scholar 

  9. Dayhoff, M.O. & Schwartz, R.M. in Atlas of Protein Sequence and Structure vol. 5 (ed. M.O. Dayhoff) 353 (National Biomedical Research Foundation, Washington, D.C., 1979).

    Google Scholar 

  10. Poteete, A., Rennell, D. & Bouvier, S. Functional significance of conserved amino acid residues, Proteins Struct. Funct. Genet. 13, 38–40 (1992).

    Article  CAS  Google Scholar 

  11. Eisenberg, D., Weiss, R. & Terwilliger, T. The helical hydrophobic moment: A measure of the amphiphilicity of a helix. Nature 299, 371–374 (1982).

    Article  CAS  Google Scholar 

  12. Hinkle, P., Hinkle, P. & Kaback, H. Information content of amino acid residues in putative helix VIII of the lac permease from Escherichia coli. Biochemistry 29, 10989–10994 (1990).

    Article  CAS  Google Scholar 

  13. Lemmon, M., Flanagan, J., Treutlein, H., Zhang, J. & Engelman, D. Sequence specificity in the dimerization of transmembrane α-helices. Biochemistry 31, 12719–12725 (1992).

    Article  CAS  Google Scholar 

  14. Lemmon, M. et al. Glycophorin A dimerization is driven by specific interaction between transmembrane α-Helices, J. Biol. Chem. 267, 7683–7689 (1992).

    CAS  PubMed  Google Scholar 

  15. Williams, K. et al. Packing of coat protein amphipathic and transmembrane helices in filamentious bacteriphage M13: Role of small residues in protein oligomerization. J. Mol. Biol. 252, 6–14 (1995).

    Article  CAS  Google Scholar 

  16. Rennell, D., Bouvier, S., Hardy, L. & Poteete, A. Systematic mutation of bacteriophage T4 lysozyme. J. Mol. Biol. 222, 67–87 (1991).

    Article  CAS  Google Scholar 

  17. Kleina, L., Miller, J. Genetic studies of the lac represser XIII. Extensive amino acid replacements generated by the use of natural and synthetic nonsense suppressors. J. Mol. Biol. 212, 295–318 (1990).

    Article  CAS  Google Scholar 

  18. Markiewicz, P., Kleina, L., Cruz, C., Ehret, S. & Miller, J. Analysis of 4000 altered Escherichia coli lac repressers resulting from suppression of nonsense mutations at 328 positions in the lacl gene. J. Mol. Biol., 240 421–433 (1994).

    Article  CAS  Google Scholar 

  19. Normanly, J., Masson, J., Kleina, L., Abelson, J. & Miller, J. Construction of two Escherichia coli amber suppressor genes: tRNAPhe and tRNACys. Proc. Natl. Acad. Sci. USA. 83, 6548–52 (1986).

    Article  CAS  Google Scholar 

  20. Kleina, L., Masson, J., Normanly, J., Abelson, J. & Miller, J. Construction of Escherichia coli amber suppressor tRNA genes II.Synthesis of additional tRNA genes and improvement of suppressor efficiency., J. Mol. Biol. 213, 705–717 (1990).

    Article  CAS  Google Scholar 

  21. Bowie, J.U., Lüthy, R. & Eisenberg, D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 253, 164–170 (1991).

    Article  CAS  Google Scholar 

  22. Lim, W.A. & Sauer, R.T. Alternative packing arrangements in the hydrophobic core of λ represser. Nature 339, 31–36 (1989).

    Article  CAS  Google Scholar 

  23. Kamtekar, S., Schiffer, J., Xiong, H., Babik, J. & Hecht, M. Protein design by binary patterning of polar and nonpolar amino acids. Science 262, 1680–1685 (1993).

    Article  CAS  Google Scholar 

  24. Lemmon, M. & Engelman, D. Helix-helix interactions inside lipid bilayers. Curr. Opin. Struct. Biol. 2, 511–18 (1992).

    Article  CAS  Google Scholar 

  25. Sahin-Toth, M., Dunten, R., Gonzalez, A. & Kaback, H. Functional interactions between putative intramembrane charge residues in the lactose permease of Escherichia coli. Proc. Natl. Acad. Sci. USA. 89, 10547–10551 (1992).

    Article  CAS  Google Scholar 

  26. Cosson, P., Lankford, S., Bonifacino, J. & Klausner, R. Membrane protein association by potential intramembrane charge pairs. Nature 351, 414–416 (1991).

    Article  CAS  Google Scholar 

  27. Lim, W., Hodel, A., Sauer, R. & Richards, F. The crystal structure of a mutant protein with altered but improved hydrophobic core packing. Proc. Natl. Acad. Sci. USA. 91, 423–427 (1994).

    Article  CAS  Google Scholar 

  28. Baldwin, E. & Matthews, B. Core-packing constraints, hydrophobicity and protein design. Curr. Opin. Biotechnol. 5, 396–402 (1994).

    Article  CAS  Google Scholar 

  29. Heinz, D. et al. Accommodation of amino acid insertions in an alpha-helix of T4 lysozyme.Structural and thermodynamic analysis. J. Mol. Biol. 236, 869–86 (1994).

    Article  CAS  Google Scholar 

  30. Weitzman, C. & Kaback, H. Cysteine scanning mutagenesis of helix V in the lactose permease of Escherichia coli. Biochemistry 34, 9374–9379 (1995).

    Article  CAS  Google Scholar 

  31. Dunten, R., Sahin-Toth, M. & Kaback, H. Cysteine scanning mutagenesis of putative helix XI in the lactose permease of Escherichia coli. Biochemistry 32, 12644–12650 (1993).

    Article  CAS  Google Scholar 

  32. Sahin-Toth, M. & Kaback, H. Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli. Prot. Sci. 2, 1024–1033 (1993).

    Article  CAS  Google Scholar 

  33. Sahin-Toth, M., Persson, B., Schwieger, J., Cohan, P. & Kaback, H. Cysteine scanning mutagenesis of the N-terminal 32 amino acid residues in the lactose permease of Escherichia coli. Prot. Sci. 3, 240–247 (1994).

    Article  CAS  Google Scholar 

  34. Frillingos, S., Sahin-Toth, M., Persson, B. & Kaback, H. Cysteine-scanning mutagenesis of putative helix VII in the lactose permease of Escherichia coli. Biochemistry 33, 8074–8081 (1994).

    Article  CAS  Google Scholar 

  35. McDermott, G. et al., Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374, 517–521 (1995).

    Article  CAS  Google Scholar 

  36. Miller, K., McKinstry, M., Hunt, W. & Nixon, B. Identification of the diacylglycerol kinase structural gene of Rhizobium meliloti 1021. Mol. Plant Microbe Int. 5, 363–371 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, J., Chen, X. & Bowie, J. Exploring the allowed sequence space of a membrane protein. Nat Struct Mol Biol 3, 141–148 (1996). https://doi.org/10.1038/nsb0296-141

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0296-141

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing