Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A method to predict functional residues in proteins

Abstract

The biological activity of a protein typically depends on the presence of a small number of functional residues. Identifying these residues from the amino acid sequences alone would be useful. Classically, strictly conserved residues are predicted to be functional but often conservation patterns are more complicated. Here, we present a novel method that exploits such patterns for the prediction of functional residues. The method uses a simple but powerful representation of entire proteins, as well as sequence residues as vectors in a generalised ‘sequence space’. Projection of these vectors onto a lower-dimensional space reveals groups of residues specific for particular subfamilies that are predicted to be directly involved in protein function. Based on the method we present testable predictions for sets of functional residues in SH2 domains and in the conserved box of cyclins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Koonin, E.V., Bork, P. & Sander, C. Chromosome III: New Gene Functions EMBO J. 13, 493–503. (1994).

    Article  CAS  Google Scholar 

  2. Doolittle, R.F. & Feng, D.F. Nearest neighbor procedure for relating progressively aligned amino acid sequences Meths. Enzymol. 183, 659–669. (1990).

    Article  CAS  Google Scholar 

  3. Lebart, L., Morineau, A. & Warwick, K.M. Multivariate Descriptive Statistical Analysis (John Wiley & Sons, New York; (1994).

    Google Scholar 

  4. Higgins, D.G. Sequence ordinations: a multivariate analysis approach to analysing large sequence data sets Comput. appl. Biosci. 8, 15–22. (1992).

    CAS  PubMed  Google Scholar 

  5. Bourne, H.R., Sanders, D.A. & McCormick, F., GTPase superfamily: a conserved switch for diverse cell functions Nature 348, 125–132. (1990).

    Article  CAS  Google Scholar 

  6. Valencia, A., Chardin, P., Wittinghofer, A. & Sander, C., ras protein family: evolutionary tree and role of conserved amino acids Biochemistry 30, 4637–4648. (1991).

    Article  CAS  Google Scholar 

  7. Milburn, M.V. et al. Molecular switch for signal transduction: Structural differences between active and inactive forms of protooncogenic ras proteins Science 247, 939–945. (1990).

    Article  CAS  Google Scholar 

  8. Stouten, P.F.W., Sander, C., Wittinghofer, A. & Valencia, A. How does the switch II region of G-domains work? FEBS Letts 320, 1–6. (1993).

    Article  CAS  Google Scholar 

  9. Sander, C. & Schneider, R. The HSSP data base of protein structure-sequence alignments Nucleic. Acids Res. 21, 3105–3109. (1993).

    Article  CAS  Google Scholar 

  10. Valencia, A., Kjeldgaard, M., Pai, E.F. & Sander, C. GTPase domains of ras p21 oncogene protein and elongation factor Tu: Analysis of three-dimensional structures, sequence families, and functional sites Proc. natn. Acad. Sci. U.S.A. 88, 5443–5447. (1991).

    Article  CAS  Google Scholar 

  11. Kjeldgaard, M., Nissen, P., Thirup, S. & Nyborg, J. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation Structure 1, 35–50. (1993).

    Article  CAS  Google Scholar 

  12. Kjeldgaard, M. & Nyborg, J. Refined structure of elongation factor Tu from Escherichia coli J. molec. Biol. 223, 721–742. (1992).

    Article  CAS  Google Scholar 

  13. Berchtold, H. et al. Crystal structure of active elongation factor Tu reveals major domain rearrangements Nature 365, 126–132. (1993.)

    Article  CAS  Google Scholar 

  14. Pawson, Y. & Gish, G. SH2 and SH3 domains: From structure to function Cell 71, 359–362. (1992).

    Article  CAS  Google Scholar 

  15. Sander, C. & Schneider, R. Database of homology-derived structures and the structural meaning of sequence alignment Proteins 9, 56–68. (1991).

    Article  CAS  Google Scholar 

  16. Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences Cell 72, 767–778. (1993).

    Article  CAS  Google Scholar 

  17. Waksman, G. et al. Crystal structure of the phosphotyrosine recognition domain SH2 of v-Src complexed with tyrosine phosphorylated peptides Nature 385, 646–653. (1992).

    Article  Google Scholar 

  18. Birge, R.B. & Hanafusa, H. Closing in on SH2 Specificity Science 262, 1522–1524. (1993).

    Article  CAS  Google Scholar 

  19. Lew, D.J. & Reed, S.I. A proliferation of cyclins Trends cell Biol. 2, 77–81. (1992).

    Article  CAS  Google Scholar 

  20. Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. Numerical Recipes in C 456–493 (Cambridge University Press, Cambridge, (1992).

    Google Scholar 

  21. Devereux, J., Haeberli, P. & Smithies, O. A comprehensive set of sequence analysis programs for the VAX Nucl. Acids Res. 12, 387–395. (1984).

    Article  CAS  Google Scholar 

  22. Pai, E.F. et al. Refined structure of the triphosphate conformation of h-Ras P21 at 1.35 Angstroms resolution: Implications for the mechanism of GTP hydrolysis EMBOJ 9, 2351–2359. (1990).

    Article  CAS  Google Scholar 

  23. Rost, B., Sander, C. & Schneider, R. PHD - an automatic mail server for protein secondary structure prediction CABIOS 10, 53–60. (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casari, G., Sander, C. & Valencia, A. A method to predict functional residues in proteins. Nat Struct Mol Biol 2, 171–178 (1995). https://doi.org/10.1038/nsb0295-171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0295-171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing