Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Human telomeric C–strand tetraplexes

Abstract

Telomeric C–strand sequences form non–Watson–Crick base–paired structures in supercoiled plasmids and in oligonucleotides at low pH. Here we examine oligonucleotides composed of 2 or 4 repeats of the human telomeric C–strand sequence d(CCCTAA)n. At low pH, the 2–repeat molecule forms a dimer which exhibits H1′–H1′ nuclear Overhauser effects (NOEs) between stacked C·C+ base pairs. These NOEs are characteristic of the i–motif, which is a tetraplex composed of two intercalated C·C+ duplexes. The 4–repeat molecule forms an intramolecular monomeric structure at low pH, suggesting that four contiguous cytosine tracts fold into a C·C+ intercalated tetraplex. These unusual structures may be relevant to the formation of guanine tetraplexes by complementary G–rich sequences. They may also provide a general mechanism for self–recognition by nucleic acids.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Blackburn, E.H. Structure and function of telomeres. Nature 350, 569–573(1991).

    Article  CAS  Google Scholar 

  2. Greider, C.W. Telemers. Curr. Opin. Cell Biol. 3, 444–451 (1991).

    Article  CAS  Google Scholar 

  3. Henderson, E. & Blackburn, E.H. An overhanging 3′ terminus is a conserved feature of telomeres. Molec. cell. Biol. 9, 345–348 (1989).

    Article  CAS  Google Scholar 

  4. Williamson, J.R. G-quartets in biology: reprise. Proc. natn. Acad. Sci. U.S.A. 90, 3124 (1993).

    Article  CAS  Google Scholar 

  5. Kang, C.H., Zhang, X., Ratliff, R., Moyzis, R. & Rich, A. Crystal structure of four-stranded Oxytricha telomeric DNA. Nature 356, 126–131 (1992).

    Article  CAS  Google Scholar 

  6. Smith, F.W. & Feigon, J. Quadruplex structure of Oxytricha telomeric DNA oligonucleotides. Nature 356, 164–168 (1992).

    Article  CAS  Google Scholar 

  7. Sen, D. & Gilbert, W. A sodium-potassium switch in the formation of four-stranded G4-DNA. Nature 344, 410–414 (1990).

    Article  CAS  Google Scholar 

  8. Sundquist, W.I. & Klug, A. Telomeric DMA dimerizes by formation of guanine tetrads between hairpin loops. Nature 342, 825–829 (1989).

    Article  CAS  Google Scholar 

  9. Williamson, J.R., Raghuraman, M.K. & Cech, T.R. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59, 871–880 (1989).

    Article  CAS  Google Scholar 

  10. Henderson, E., Hardin, C.C., Walk, S.K., Tinoco, I.J. & Blackburn, E.H. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell 51, 899–908 (1987).

    Article  CAS  Google Scholar 

  11. Blackburn, E.H. & Szostack, J.W. The molecular structure of centromeres and telomeres. A. Rev. Biochem. 53, 163–194 (1984).

    Article  CAS  Google Scholar 

  12. Oka, Y. & Thomas, C.A. The cohering telomeres of Oxytricha. Nucleic Acids Res. 15, 8877–8898 (1987).

    Article  CAS  Google Scholar 

  13. Frank-Kamenetskii, M.D. The turn of the quadruplex? Nature 342, 737 (1989).

    Article  CAS  Google Scholar 

  14. Sundquist, W.I. & Heaphy, S. Evidence for interstrand quadruplex formation in the dimerization of human inmmunodeficiency virus 1 genomic RNA. Proc. natn. Acad. Sci. U.S.A. 90, 3393–3397 (1993).

    Article  CAS  Google Scholar 

  15. Marquet, R. et al. Dimerization of human immunodeficiencey virus (type 1) RNA: stimulation by cations and possible mechanism. Nucleic Acids Res. 19, 2349–2357 (1991).

    Article  CAS  Google Scholar 

  16. Liu, Z., Frantz, J.D., Gilbert, W. & Tye, B.K. Identification and characterization of a nuclease activity specific for G4 tetrastranded DNA. Proc. natn. Acad. Sci. U.S.A. 90, 3157–3161 (1993).

    Article  CAS  Google Scholar 

  17. Weisman-Shomer, P. & Fry, M. QUAD, a protein from hepatocyte chromatin that binds selectively to guanine-rich quadruplex DNA. J. biol. Chem. 268, 3306–3312 (1993).

    CAS  PubMed  Google Scholar 

  18. Walsh, K. & Gualberto, A. MyoD binds to the guanine tetrad nucleic acid structure. J. biol. Chem. 267, 13714–13718 (1992).

    CAS  PubMed  Google Scholar 

  19. Chung, I.K., Mehta, V.B., Spitzner, J.R. & Muller, M.T. Eukaryotic topoisomerase II cleavage of parallel stranded DNA tetraplexes. Nucleic Acids Res. 20, 1973–1977 (1992).

    Article  CAS  Google Scholar 

  20. Schierer, T. & Henderson, E. A protein from Tetrahymena thermophila that specifically binds parallel-stranded G4-DNA. Biochemistry (in the press).

  21. Fang, G. & Cech, T.R. The β subunit of Oxytricha telomere-binding protein promotes G-quartet formation by telomeric DNA. Cell 74, 875–885 (1993).

    Article  CAS  Google Scholar 

  22. Gehring, K., Leroy, J.-L. & Guéron, M. A tetrameric DNA structure with protonated cytosine-cytosine base pairs. Nature 363, 561–565 (1993).

    Article  CAS  Google Scholar 

  23. Leroy, J.-L., Gehring, K., Kettani, A. & Guéron, M. Acid multimers of oligodeoxycytidine strands:stoichiometry, base-pair characterization and proton exchange properties. Biochemistry 32, 6019–6031 (1993).

    Article  CAS  Google Scholar 

  24. Patel, D.J. Tetrads through interdigitation. Nature 363, 499–500 (1993).

    Article  CAS  Google Scholar 

  25. Ahmed, S. & Henderson, E. Formation of novel hairpin structures by telomeric C-strand oligonucleotides. Nucleic Acids Res. 20, 507–511 (1992).

    Article  CAS  Google Scholar 

  26. Lyamichev, V.I. et al. An unusual DNA structure detected in a telomeric sequence under superhelical stress and at low pH. Nature 339, 634–637 (1989).

    Article  CAS  Google Scholar 

  27. Belotserkovskii, B.P., Krasilnikova, M.M., Veselkov, A.G. & Frank-Kamenetskii, M.D. Kinetic trapping of H-DNA by oligonucleotide binding. Nucleic Acids Res. 20, 1903–1908 (1992).

    Article  CAS  Google Scholar 

  28. Voloshin, O.N. et al. An eclectic DNA structure adopted by human telomeric sequence under superhelical stress and low pH. J. Biomol. Struct. Dyn. 9, 643–652 (1992).

    Article  CAS  Google Scholar 

  29. De los Santos, C & Patel, D. NMR studies of DNA (R+)n·(Y−)n·(Y+)n triple helices in solution: imino and amino proton markers of T·A·T and G·G·C+ base triple formation. Biochemistry 28, 7282–7289 (1989).

    Article  CAS  Google Scholar 

  30. Rajagopal, P. & Feigon, J. NMR studies of triple-strand formation from the homopurine-homopyrimidine deoxyribonucleotides d(GA)4 and d(TC)4 . Biochemistry 28, 7859–7870 (1989).

    Article  CAS  Google Scholar 

  31. Zahler, A.M., Williamson, J.R., Cech, T.R. & Prescott, D.M. Inhibition of telomerase by G-quartet DNA structures. Nature 350, 718–720 (1991).

    Article  CAS  Google Scholar 

  32. Sen, D. & Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334, 364–366 (1991).

    Article  Google Scholar 

  33. Ashley, T. & Ward, D.C. A “hot-spot” of recombination coincides with an interstitial telomeric sequence in the Armenian hamster. Cytogenet. cell. Genet. 62, 169–171 (1993).

    Article  CAS  Google Scholar 

  34. Katinka, M.D. & Bourgain, F.M. Interstitial telomeres are hotspots for illegitimate recombination with DNA molecules injected into the macronucleus ofParamecium primaurelia. EMBO J. 11, 725–732 (1992).

    Article  CAS  Google Scholar 

  35. Pluta, A.F. & Zakian, V.A. Recombination occurs during telomere formation in yeast. Nature 337, 429–433 (1989).

    Article  CAS  Google Scholar 

  36. Hastie, N.D. & Allshire, R.C. Human telomeres: fusion and interstitial sites. Trends Genet. 5, 326–331 (1989).

    Article  CAS  Google Scholar 

  37. Kintanar, A., Klevit, R.E. & Reid, B.R. Two-dimensional NMR investigation of a bent DNA fragment: assignment of the proton resonances and preliminary structural analysis. Nucleic Acids Res. 15, 5845–5862 (1987).

    Article  CAS  Google Scholar 

  38. Sklenar, V. & Bax, A. Spin-echo water suppression for the generation of pure-phase two-dimensional NMR spectra. J. magn. Reson. 74, 469–479 (1987).

    CAS  Google Scholar 

  39. Jeener, J., Meier, B.H., Bachmann, P. & Ernst, R.R. Investigation of exchange processes by two-dimensional NMRspectroscopy. J. chem. Phys. 71, 4546–4553 (1979).

    Article  CAS  Google Scholar 

  40. Plateau, P. & Guéron, M. Exhangeable proton NMR without baseline distortion, using new strong-pulse sequences. J. Am. chem. Soc. 104, 7310–7311 (1982).

    Article  CAS  Google Scholar 

  41. Driscoll, P.C., Clore, G.M., Beress, L. & Gronenborn, A.M. A proton nuclear magnetic resonance study of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata. Biochemistry 28, 2178–2187 (1989).

    Article  CAS  Google Scholar 

  42. Braunschweiler, L. & Ernst, R.R. Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J. magn. Reson. 53, 521–528 1983).

    Article  CAS  Google Scholar 

  43. Griesinger, C., Otting, G., Wüthrich, K. & Ernst, R.R. Clean TOCSY for 1H spin system identification in macromolecules. J. Am. chem. Soc. 110, 7870–7872 (1988).

    Article  CAS  Google Scholar 

  44. States, D.J., Haberkorn, R.A. & Ruben, D.J. A two-dimensional nuclear Overhauser experiment with pure absorption phase in four quadrants. J. magn. Reson. 48, 286–292 (1982).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ahmed, S., Kintanar, A. & Henderson, E. Human telomeric C–strand tetraplexes. Nat Struct Mol Biol 1, 83–88 (1994). https://doi.org/10.1038/nsb0294-83

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0294-83

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing