Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of human leukotriene A4 hydrolase, a bifunctional enzyme in inflammation

Abstract

Leukotriene (LT) A4 hydrolase/aminopeptidase (LTA4H) is a bifunctional zinc enzyme that catalyzes the biosynthesis of LTB4, a potent lipid chemoattractant involved in inflammation, immune responses, host defense against infection, and PAF-induced shock. The high resolution crystal structure of LTA4H in complex with the competitive inhibitor bestatin reveals a protein folded into three domains that together create a deep cleft harboring the catalytic Zn2+ site. A bent and narrow pocket, shaped to accommodate the substrate LTA4, constitutes a highly confined binding region that can be targeted in the design of specific anti-inflammatory agents. Moreover, the structure of the catalytic domain is very similar to that of thermolysin and provides detailed insight into mechanisms of catalysis, in particular the chemical strategy for the unique epoxide hydrolase reaction that generates LTB4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall and domain structure of LTA4H.
Figure 2: Bestatin binding in LTA4H.
Figure 3: The putative LTA4 binding cavity.
Figure 4: Proposed reaction mechanism for the epoxide hydrolase activity of LTA4H.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Samuelsson, B., Dahlén, S.-E., Lindgren, J.-Å., Rouzer, C.A. & Serhan, C.N. Science 237, 1171–1176 (1987).

    Article  CAS  Google Scholar 

  2. Chen, X.S., Sheller, J.R., Johnson, E.N. & Funk, C.D. Nature 372, 179–182 (1994).

    Article  CAS  Google Scholar 

  3. Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y. & Shimuzu, T. Nature 387, 620–624 (1997).

    Article  CAS  Google Scholar 

  4. Griffiths, R.J. et al. J. Exp. Med. 185, 1123–1129 (1997).

    Article  CAS  Google Scholar 

  5. Bailie, M.B. et al. J. Immunol. 157, 5221–5224 (1996).

    CAS  PubMed  Google Scholar 

  6. Byrum, R.S., Goulet, J.L., Snouwaert, J.N., Griffiths, R.J. & Koller, B.H. J. Immunol. 163, 6810–6819 (1999).

    CAS  PubMed  Google Scholar 

  7. Devchand, P.R. et al. Nature 384, 39–43 (1996).

    Article  CAS  Google Scholar 

  8. Corey, E.J. Experientia 38, 1259–1381 (1982).

    Article  CAS  Google Scholar 

  9. Wetterholm, A. et al. Proc. Natl. Acad. Sci. USA 89, 9141–9145 (1992).

    Article  CAS  Google Scholar 

  10. Örning, L. et al. J. Biol. Chem. 266, 16507–16511 (1991).

    PubMed  Google Scholar 

  11. Matthews, B.W., Fenna, R.E., Bolognesi, M.C., Schmid, M.F. & Olson, J.M. J. Mol. Biol. 131, 259–285 (1979).

    Article  CAS  Google Scholar 

  12. Groves, M.R. & Barford, D. Curr. Opin. Struct. Biol. 9, 383–389 (1999).

    Article  CAS  Google Scholar 

  13. Holmes, M.A. & Matthews, B.W. J. Mol. Biol. 160, 623–639 (1982).

    Article  CAS  Google Scholar 

  14. Mueller, M.J. et al. Proc. Natl. Acad. Sci. USA 92, 8383–8387 (1995).

    Article  CAS  Google Scholar 

  15. Blomster Andberg, M., Hamberg, M. & Haeggstrom, J.Z. J. Biol. Chem. 272, 23057–23063 (1997).

    Article  Google Scholar 

  16. Mueller, M.J. et al. Proc. Natl. Acad. Sci. USA 93, 5931–5935 (1996).

    Article  CAS  Google Scholar 

  17. Blomster, M., Wetterholm, A., Mueller, M.J. & Haeggström, J.Z. Eur. J. Biochem. 231, 528–534 (1995).

    Article  CAS  Google Scholar 

  18. Luciani, N. et al. Biochemistry 37, 686–692 (1998).

    Article  CAS  Google Scholar 

  19. Barret, A.J., Rawlings, N.D. & Woessner, J.F. In Handbook of proteolytic enzymes. (eds Barret, A.J., Rawlings, N.D. & Woessner, J.F.) 994–996 (Academic Press, London, San Diego; 1998).

    Google Scholar 

  20. Wetterholm, A. et al. Biochim. Biophys. Acta 1080, 96–102 (1991).

    Article  CAS  Google Scholar 

  21. Otwinowski, Z. In Data collection and processing. Proceedings of the CCP4 study weekend. 56–62 (SERC Daresbury Laboratory, Warrington, UK; 1993).

    Google Scholar 

  22. Collaborative Computing Project Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  23. Otwinowski, Z. In Isomorphous replacement anomalous scattering. Proceedings of the CCP4 study weekend. 80–85 (SERC Daresbury Laboratory, Warrington, UK; 1991).

    Google Scholar 

  24. de La Fortelle, E. & Bricogne, G. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  25. Abrahams, J.P. & Leslie, A.G.W. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  26. Tronrud, D.E. Acta Crystallogr. A 48, 912–916 (1992).

    Article  Google Scholar 

  27. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  28. Vriend, G. J. Mol. Graphics 8, 52–56 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Thompson at BM14 and D. Logan for help during data collection and setting up SHARP refinement, M. Andberg for the plasmid pT3-MB4 and E. Ohlsson for technical assistance, as well as A. Wetterholm and B. Samuelsson for helpful discussions and advice. We also would like to thank personnel at beamline X25 of the NSLS, Brookhaven, and I711 of MAX-Lab, Lund, for preliminary data not used in this article. The work was funded by the Swedish Natural Sciences Research Council, the Swedish Medical Research Council, The European Union, and Konung Gustav V:s 80-Årsfond.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjolein M.G.M. Thunnissen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thunnissen, M., Nordlund, P. & Haeggström, J. Crystal structure of human leukotriene A4 hydrolase, a bifunctional enzyme in inflammation. Nat Struct Mol Biol 8, 131–135 (2001). https://doi.org/10.1038/84117

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing