Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix

Abstract

Aspartic proteinase A from yeast is specifically and potently inhibited by a small protein called IA3 from Saccharomyces cerevisiae . Although this inhibitor consists of 68 residues, we show that the inhibitory activity resides within the N-terminal half of the molecule. Structures solved at 2.2 and 1.8 Å, respectively, for complexes of proteinase A with full-length IA3 and with a truncated form consisting only of residues 2–34, reveal an unprecedented mode of inhibitor–enzyme interactions. Neither form of the free inhibitor has detectable intrinsic secondary structure in solution. However, upon contact with the enzyme, residues 2–32 become ordered and adopt a near-perfect α-helical conformation. Thus, the proteinase acts as a folding template, stabilizing the helical conformation in the inhibitor, which results in the potent and specific blockage of the proteolytic activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the structure of proteinase A.
Figure 2: Inhibitor IA3 and its interactions with proteinase A.
Figure 3: Interactions in the vicinity of the active site of proteinase A.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Handbook of proteolytic enzymes (eds Barrett, A.J., Woessner, J.F. & Rawlings, N.D.) 1–1650 (Academic Press, London; 1998).

  2. Schreuder H.A. et al. Nature Struct. Biol. 1, 48– 54 (1994).

    Article  CAS  Google Scholar 

  3. Engh, R.A. et al. J. Mol. Biol. 234, 1060– 1069 (1993).

    Article  CAS  Google Scholar 

  4. Gomis-Ruth, F.X. et al. Nature, 389, 77–81 (1997).

    Article  CAS  Google Scholar 

  5. Christeller, J.T., Farley, P. E., Ramsay, R.J., Sullivan, P. A. & Laing, W.A. Eur. J. Biochem. 254 , 160–167 (1998).

    Article  CAS  Google Scholar 

  6. Dreyer, T., Valler, M. J., Kay, J., Charlton, P. & Dunn, B.M. Biochem. J. 231, 777– 779 (1985).

    Article  CAS  Google Scholar 

  7. Craig, C. et al. AIDS 12, 1611–1618 (1998).

    Article  CAS  Google Scholar 

  8. Dame, J.B. et al. Mol. Biochem. Parasitol. 64, 177– 190 (1994).

    Article  CAS  Google Scholar 

  9. Monod, M., Togni, G., Hube, B. & Sanglard, D. Mol. Microbiol. 13, 357–368 ( 1994).

    Article  CAS  Google Scholar 

  10. Wlodawer, A. & Vondrasek, J. Annu. Rev. Biophys. Biomol. Struct. 27, 249–284 ( 1998).

    Article  CAS  Google Scholar 

  11. Moon, R.P. et al. Eur. J. Biochem. 244, 552– 560 (1997).

    Article  CAS  Google Scholar 

  12. Roberts, N.A., Craig, J.C. & Sheldon, J. AIDS 12, 453– 460 (1998).

    Article  CAS  Google Scholar 

  13. Takahashi, S. et al. J. Biochem. 125, 348– 353 (1999) .

    Article  CAS  Google Scholar 

  14. Kageyama, T. Eur. J. Biochem. 253, 804–809 (1998).

    Article  CAS  Google Scholar 

  15. Kreft, S. et al. Phytochemistry 44, 1001– 1006 (1997).

    Article  CAS  Google Scholar 

  16. Saheki, T., Matsuda, Y. & Holzer, H. Eur. J. Biochem. 47, 325– 332 (1974).

    Article  CAS  Google Scholar 

  17. Aguilar, C.F. et al. J. Mol. Biol. 267, 899– 915 (1997).

    Article  CAS  Google Scholar 

  18. Schu, P. & Wolf, D.H. FEBS Lett. 283, 78–84 (1991).

    Article  CAS  Google Scholar 

  19. Biedermann, K., Montali, U., Martin, B., Svendsen, I. B. & Ottesen, M. Carlsberg Res. Commun. 45, 225 –235 (1980).

    Article  CAS  Google Scholar 

  20. Kondo, H. et al. J. Biochem. 124, 141– 147 (1998).

    Article  CAS  Google Scholar 

  21. Rost, B. & Sander, C. J. Mol. Biol. 232, 584–599 (1993).

    Article  CAS  Google Scholar 

  22. Davies, D.R. Annu. Rev. Biophys. Biophys. Chem. 19, 189– 215 (1990).

    Article  CAS  Google Scholar 

  23. Richter, C., Tanaka, T., Koseki, T. & Yada, R.Y. Eur. J. Biochem. 261, 746–752 ( 1999).

    Article  CAS  Google Scholar 

  24. Khan, A.R. & James, M.N.G. Protein Sci. 7, 815–836 (1998).

    Article  CAS  Google Scholar 

  25. Wu, C.Y., Robertson, D.H.L., Hubbard, S.J., Gaskell, S. J. & Beynon, R. J. J. Biol. Chem. 274 , 1108–1115 (1999).

    Article  CAS  Google Scholar 

  26. Cooper, J.B. et al. Biochemistry 28, 8596– 8603 (1989).

    Article  CAS  Google Scholar 

  27. Tigue, N. J. & Kay, J. J. Biol. Chem. 273, 26441–26446 (1998).

    Article  CAS  Google Scholar 

  28. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  Google Scholar 

  29. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  30. Jones, T. A. & Kieldgaard, M. Methods Enzymol. 277, 173–208 (1997).

    Article  CAS  Google Scholar 

  31. Brünger, A. T. et al. Acta Crystallogr. D 54, 905– 921 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of H. Holzer, formerly of the University of Freiburg im Breisgau, Germany. We thank A. Chung at the Protein Chemistry Core, University of Florida, for synthesis of peptides; A. Edison and R.A. Byrd for their valuable contributions with the NMR; V. Dhanaraj and B. Brownsey for their extensive help with modeling and mass spectroscopy analysis, respectively; J. Collins for help with the preparation of Fig. 1; and A. Arthur for editorial comments. This work was supported in part by awards from the BBSRC (ROPA) and from Actelion, Allschwil, Switzerland (J.K.), by an NIH grant (B.M.D.) and by the National Cancer Institute, DHHS, under contract with ABL (A.W.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John Kay or Alla Gustchina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Phylip, L., Lees, W. et al. The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix. Nat Struct Mol Biol 7, 113–117 (2000). https://doi.org/10.1038/72378

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72378

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing