Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structures of Escherichia coli phytase and its complex with phytate

Abstract

Phytases catalyze the hydrolysis of phytate and are able to improve the nutritional quality of phytate-rich diets. Escherichia coli phytase, a member of the histidine acid phosphatase family has the highest specific activity of all phytases characterized. The crystal structure of E. coli phytase has been determined by a two-wavelength anomalous diffraction method using the exceptionally strong anomalous scattering of tungsten. Despite a lack of sequence similarity, the structure closely resembles the overall fold of other histidine acid phosphatases. The structure of E. coli phytase in complex with phytate, the preferred substrate, reveals the binding mode and substrate recognition. The binding is also accompanied by conformational changes which suggest that substrate binding enhances catalysis by increasing the acidity of the general acid.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The three-dimensional structure of E. coli phytase and comparison to other related structures.
Figure 2: Phyate and tungstate binding.
Figure 3: Binding pocket and interaction with phyate.
Figure 4: Conformational change induced by phyate binding.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Reddy, N.R., Sathe, S.K. & Salunkhe, D.K. Adv. Food Res. 28, 1– 92 (1982).

    Article  CAS  Google Scholar 

  2. Graf, E. In Phytic Acid Chemistry and Application (ed. Graf, E.) 1– 21 (Pilatus Press, Minneapolis; 1986).

    Google Scholar 

  3. Wodzinski, R.J. & Ullah, H.J. Adv. Appl. Micro. 42, 263–302 ( 1996).

    Article  CAS  Google Scholar 

  4. Greiner, R., Konietzny, U. & Jany, K.-D. Arch. Biochem. Biophys. 303, 107–113 (1993).

    Article  CAS  Google Scholar 

  5. Wyss, M. et al. Appl. Env. Microbiol. 65, 367– 373 (1999).

    CAS  Google Scholar 

  6. Chi, H. et al. Genomics 56, 324–336 (1999).

    Article  CAS  Google Scholar 

  7. Vincent, J.B., Crowder, M.W. & Averill, B.A. Trends Biochem. Sci. 17, 105 –110 (1992).

    Article  CAS  Google Scholar 

  8. Van Etten, R.L. Ann. N.Y. Acad. Sci. 390, 27–51 (1992).

    Article  Google Scholar 

  9. Ostanin, K. et al. J. Biol. Chem. 267, 22830– 22836 (1992).

    CAS  PubMed  Google Scholar 

  10. Ostanin, K. & Van Etten, R.L. J. Biol. Chem. 268 , 20778–20784 (1993).

    CAS  PubMed  Google Scholar 

  11. Lindqvist, Y., Schneider, G. & Vihko, P. Eur. J. Biochem. 221, 139– 142 (1994).

    Article  CAS  Google Scholar 

  12. Schneider, G., Lindqvist, V. & Vihko, P. EMBO J. 12, 2609– 2615 (1993).

    Article  CAS  Google Scholar 

  13. LaCount, M.W., Handy, G. & Lebioda, L. J. Biol. Chem. 273, 30406– 30409 (1998).

    Article  CAS  Google Scholar 

  14. Kostrewa, D. et al. Nature Struct. Biol. 4, 185– 190 (1997).

    Article  CAS  Google Scholar 

  15. Kostrewa, D., Wyss, M., D'Arcy, A., van Loon, A.P.G.M. J. Mol. Biol. 288, 965–974 (1999).

    Article  CAS  Google Scholar 

  16. Cohen, G.H. J. Appl. Crystallogr. 30, 1160–1161 (1997).

    Article  CAS  Google Scholar 

  17. Jia, Z., Golovan, S., Ye, Q. & Forsberg, C.W. Acta Crystallogr. D54, 647–649 ( 1998).

    CAS  Google Scholar 

  18. Otwinowski, Z. In Proceedings of the CCP4 Study Weekend: Data Collection and Processing (ed Sawyer L., Issacs N.& Bailey S.) 56– 62 (Daresbury Laboratory, Warrington; 1993).

  19. Minor, W. XdisplayF Program. Purdue University, West Lafayette, USA (1993 ).

  20. Collaborative Computational Project, Number 4. Acta Crystallogr. D50, 760–763 (1994).

  21. Egloff, M.-P., Cohen, P. T. W., Reinemer, P. & Barford, D. J. Mol. Biol. 254, 942–959 (1995).

    Article  CAS  Google Scholar 

  22. de La Fortelle, E. & Bricogne, G. In Methods in Enzymology, Macromolecular Crystallography (eds. Sweet, R.M. & Carter, Jr. C.W.) 276, 472–494 (Academic Press, New York; 1997).

  23. Abrahams J.P. & Leslie A.G.W. Acta Crystallogr. D52, 30–42 (1996).

    CAS  Google Scholar 

  24. McRee, D.E. J. Mol. Graphics 10, 44–47 (1992).

    Article  Google Scholar 

  25. Brünger, A.T. et al. Acta Crystallogr. D54, 905– 921 (1998).

    Google Scholar 

  26. Navaza, J. Acta Crystallogr. A50, 157–163 (1994).

    Article  CAS  Google Scholar 

  27. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. App. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  28. Engelen, A.J., Vanderheeft, F.C., Randsdorp, P.H.G., & Smit, E.L.C. J. AOAC. Int. 77: 760–764. (1994).

    CAS  PubMed  Google Scholar 

  29. Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., & Klenk, D.C. Anal. Biochem. 150: 76–85. (1985).

    Article  Google Scholar 

  30. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1992).

    Article  Google Scholar 

  31. Merrit, E.A. & Murphy, M.E.P. Acta Crystallogr. D50, 869–873 (1994).

    Google Scholar 

  32. Nicholls, A., Sharp, K. & Honig, B. Proteins 11, 281– 296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Y.-C. Liou of P. Davies' group at Queen's University for equipment and technical assistance in early purification attempts and for his support throughout the project. We thank A. Tocilj for his encouragement and assistance at various stages of the project. We thank A. Iyo and M. Cotrill for constructing and help with purifying the inactive mutant, respectively. We also thank E. Leinala for her advice on crystallization. G. Thatcher provided helpful discussion. We are grateful to L. Flaks and the technical staff at the National Synchrotron Light Source at Brookhaven National Laboratory for their support at X8-C. D.L. was an Ontario Graduate Scholarship recipient. This work was supported by a NSERC grant to Z.J. and contract funding from Ontario Pork to C.W.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongchao Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, D., Golovan, S., Forsberg, C. et al. Crystal structures of Escherichia coli phytase and its complex with phytate. Nat Struct Mol Biol 7, 108–113 (2000). https://doi.org/10.1038/72371

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72371

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing