Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Zn2+-binding and molecular determinants of tetramerization in voltage-gated K+ channels

Abstract

The N-terminal, cytoplasmic tetramerization domain (T1) of voltage-gated K+ channels encodes molecular determinants for subfamily-specific assembly of α-subunits into functional tetrameric channels. Crystal structures of T1 tetramers from Shaw and Shaker subfamilies reveal a common four-layered scaffolding. Within layer 4, on the hypothetical membrane-facing side of the tetramer, the Shaw T1 tetramer contains four zinc ions; each is coordinated by a histidine and two cysteines from one monomer and by one cysteine from an adjacent monomer. The amino acids involved in coordinating the Zn2+ ion occur in a HX5CX20CC sequence motif that is highly conserved among all Shab, Shaw and Shal subfamily members, but is not found in Shaker subfamily members. We demonstrate by coimmunoprecipitation that a few characteristic residues in the subunit interface are crucial for subfamily-specific tetramerization of the T1 domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, The Shaw T1 tetramer drawn in MOLSCRIPT37 and rendered using POVRAY version 3.0.
Figure 2: a, The zinc binding in the Shaw T1 tetramer.
Figure 3: a, Sequence alignments for T1 domains have been made for Shaw (23 sequences), Shaker (55 sequences), Shab (25 sequences), and Shal (14 sequences). Sequences in each subfamily were aligned using CLUSTALW (Complete sequences are at http://sbl.salk.edu/current_res/kv_seq.html).
Figure 4: Coimmunoprecipitation analysis between the epitope tagged, wild-type N-terminal construct (1nT1; labeled 1nT1-tag in the Figure) of Shaker and the mutant or chimeric forms of Shaker T1 domain (1T1; labeled Test in the Figure) for assembly test.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Hille, B., Ionic channels of excitable membranes (Sinauer, Sunderland, Massachusetts; 1991).

    Google Scholar 

  2. Papazian, D.M., Schwarz, T.L., Tempel, B.L., Jan, Y.N. & Jan, L.Y., Science 237, 749–753 (1987).

    Article  CAS  Google Scholar 

  3. Pongs, O. et al. EMBO J. 7, 1087–1096 (1988).

    Article  CAS  Google Scholar 

  4. Salkoff, L. et al. Trends Neurosci. 15, 161– 166 (1992).

    Article  CAS  Google Scholar 

  5. Ruppersberg, J.P. et al., Nature 345, 535–537 (1990).

    Article  CAS  Google Scholar 

  6. Sheng, M., Liao, Y.J., Jan., Y.N. & Jan, L.Y. Nature 365, 72–75 (1993).

    Article  CAS  Google Scholar 

  7. Scott, V.E.S. et al. Biochemistry 33, 1617–1623 (1994).

    Article  CAS  Google Scholar 

  8. Christie, M.J., North, R.A., Douglass, J. & Adelman, J.P. Neuron 2, 405–411 (1990).

    Article  Google Scholar 

  9. Isacoff, E.Y., Jan, Y.N. & Jan, L.Y. Nature 345, 530– 534 (1990).

    Article  CAS  Google Scholar 

  10. Wei, A. et al. Science 248, 599–603 (1990).

    Article  CAS  Google Scholar 

  11. Jan, L.Y. & Jan, Y.N. Trends Neurosci. 13, 415–419 (1990).

    Article  CAS  Google Scholar 

  12. Kamb, A., Tseng-Crank, J. & Tanouye, M.A. Neuron 1, 421– 430 (1988).

    Article  CAS  Google Scholar 

  13. Schwarz, T.L., Tempel, B.L., Papazian, D.M., Jan., Y.N. & Jan, L.Y. Nature 331, 137–142 (1988).

    Article  CAS  Google Scholar 

  14. Shen, N.V., Chen, X., Boyer, M.M. & Pfaffinger, P.J. Neuron 11, 67–76 (1993).

    Article  CAS  Google Scholar 

  15. Shen, N.V. & Pfaffinger, P.J. Neuron 14, 625–633 (1995).

    Article  CAS  Google Scholar 

  16. Li, M., Jan, Y.N. & Jan, L.Y. Science 257, 1225– 1230 (1992).

    Article  CAS  Google Scholar 

  17. Pfaffinger, P.J. & DeRubeis, D. J. Biol. Chem. 270, 28595–28600 (1995).

    Article  CAS  Google Scholar 

  18. Tu, L. et al. J. Biol. Chem. 271, 18904–18911 (1996).

    Article  CAS  Google Scholar 

  19. Lee, T.E., Philipson, L.H., Kuznetsov, A. & Nelson, D.J. Biophys. J. 66, 667–673 (1994).

    Article  CAS  Google Scholar 

  20. VanDongen, A.M.J., Frech, G.C., Drewe, J.A., Joho, R.H. & Brown, A.M. Neuron 5, 433– 43 (1990).

    Article  CAS  Google Scholar 

  21. Covarrubias, M., Wei, A. & Salkoff, L. Neuron 7, 763– 773 (1991).

    Article  CAS  Google Scholar 

  22. Kreusch, A., Pfaffinger, P.J., Stevens, C.F. & Choe, S. Nature 392, 945–948 (1998).

    Article  CAS  Google Scholar 

  23. Coleman, J.E. Annu. Rev. Biochem. 61, 897–946 (1992).

    Article  CAS  Google Scholar 

  24. Alberts, I.L., Nadassy, K. & Wodak, S. Prot. Sci. 7, 1700– 1716 (1998).

    Article  CAS  Google Scholar 

  25. Galcheva-Gargova, Z. et al. Science 272, 1797–1802 (1996).

    Article  CAS  Google Scholar 

  26. Sun, L., Liu, A. & Georgopoulos, K. EMBO J. 15, 5358– 5369 (1996).

    Article  CAS  Google Scholar 

  27. Somers, W., Ultsch, M., De Vos, A.M. & Kossiakoff, A.A. Nature 372, 478–481 (1994).

    Article  CAS  Google Scholar 

  28. Sewing, S., Roeper, J. & Pongs, O. Neuron 16, 455– 463 (1996).

    Article  CAS  Google Scholar 

  29. Nakahira, K., Shi, G., Rhodes, K.J. & Trimmer, J.S. J. Biol. Chem. 271, 7084–7089 (1996).

    Article  CAS  Google Scholar 

  30. Boland, L.M., Jurman, M.E. & Yellen, G. Biophys. J. 66, 694– 699 (1994).

    Article  CAS  Google Scholar 

  31. Otwinowski, Z. In Data collection and processing. ( eds. Sawyer, L. Isaacs, N., Bailey, S.) 56–62 (CCP4 Study Weekend, SERC Daresbury Laboratory, Warrington, U.K.; 1993).

    Google Scholar 

  32. Leslie, A.G.W. MOSFLM. (MRC Laboratory of Molecular Biology, Cambridge, UK; 1996).

    Google Scholar 

  33. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 670–673 (1991).

  34. Brunger, A.T., X-PLOR Version 3.8. (Yale University Press, New Haven, Connecticut; 1996).

  35. Jones, T.A., Zou, J.Y., Cowen, S.W. & Kjelgard, M.W. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  36. Perin, M.S., Fried, V.A., Stone, D.K., Xie, X.S. & Sudhof, T.C., J. Biol. Chem. 266, 3877– 3881 (1991).

    CAS  PubMed  Google Scholar 

  37. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  38. Evans, S.V. J. Mol. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  39. Eichhorn, K.D. DISCO. (Stanford Synchrotron Radiation Laboratory, California, USA; 1985).

    Google Scholar 

Download references

Acknowledgements

We thank J. Greenwald and R. Robinson for help in data collection at SSRL; K. Turbedsky for analytical centrifugation; M. Park for amino acid sequencing; G. Louie and T. Pollard for discussions and comments on the manuscript; P. Biggin for sequence alignment advice and web page construction; and W. Kwiatkowski for rendering figures. Supported in part by the Lucille P. Markey Charitable Trust (K.B.) and the American Heart Association (K.B., A.K.), the Chapman Foundation (K.B.), the Hoffman Foundation (A.K.), and an NIH training grant (K.B., M.H.N.) administered through the University of California, San Diego. S.C. is a recipient of the Klingenstein Fellowship Award in Neuroscience. SSRL is funded by the Department of Energy, Office of Basic Energy Science. This work is supported by grants from the NIH (to P.J.P. and S.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senyon Choe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bixby, K., Nanao, M., Shen, N. et al. Zn2+-binding and molecular determinants of tetramerization in voltage-gated K+ channels. Nat Struct Mol Biol 6, 38–43 (1999). https://doi.org/10.1038/4911

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4911

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing