Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the CDK4/6 inhibitory protein p18INK4c provides insights into ankyrin-like repeat structure/function and tumor-derived p16INK4 mutations

Abstract

p18INK4c is a member of a family of INK4 proteins that function to arrest the G1 to S cell cycle transition by inhibiting the activity of the cyclin-dependent kinases 4 and 6. The X-ray crystal structure of the human p18INK4c protein to a resolution of 1.95 Å reveals an elongated molecule comprised of five contiguous 32- or 33-residue ankyrin-like repeat units. Each ankyrin-like repeat contains a β-strand helix-turn-helix extended strand β-strand motif that associates with neighboring motifs through β-sheet, and helical bundle interactions. Conserved ankyrin-like repeat residues function to facilitate the ankyrin repeat fold and the tertiary interactions between neighboring repeat units. A large percentage of residues that are conserved among INK4 proteins and that map to positions of tumor-derived p16INK4 mutations play important roles in protein stability. A subset of these residues suggest an INK4 binding surface for the cyclin-dependent kinases 4 and 6. This surface is centered around a region that shows structural features uncharacteristic of ankyrin-like repeat units.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morgan, D.O. Principles of CDK regulation. Nature 374, 131–134 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Elledge, S.J. & Harper, J.W. Cdk inhibitors: on the threshold of checkpoints and development. Curr. Opin. Cell Biol. 6, 847–852 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Hollingsworth, R.E., Phang-Lang, J. & Lee, W.-H. Integration of cell cycle control with transcriptional regulation by the retinoblastoma protein. Curr. Opin. Cell Biol. 5, 194–200 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Weinberg, R.A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Chow, K.N.B., Starostik, P. & Dean, D.C., The Rb family contains a conserved cyclin-dependent-kinase-regulated transcriptional represser motif. Mol. Cell. Biol. 16, 7173–7181 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ranade, K. et al Mutations associated with familial melanoma impair p16INK4 function. Nature Genet. 10, 114–116 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Serrano, M., Hannon, G.J. & Beach, D. A new regulatory motif in cell cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704–707 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Kamb, A., et al. A cell cycle regulator potentially involved in the genesis of many tumor types. Science 264, 436–440 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Hannon, G.J. & Beach, D. p15INK4B is a potential effector of TGF-—induced cell cycle arrest. Nature 371, 257–261 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Guan, K.-L. et al Growth by suppression by p18, a P16INK4/MTS1- and P14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev. 8, 2939–2952(1994).

    Article  CAS  PubMed  Google Scholar 

  11. Chan, F.K.M., Zhang, J., Cheng, L., Shapiro, D.N. & Winoto, A. Identification of human and mouse p19, a novel CDK4 and CDK6 inhibitor with homology to p16ink4. Mol. Cell. Biol. 15, 2682–2688 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ragione, F.D., Borriello, A.,, L. & Iolascon, A. Cell division cycle alterations in human malignancies Cancer J. 10, 151–156 (1997).

  13. Pollock, P.M., Pearson, J.V. & Hayward, N.K. Compilation of somatic mutations of the CDKN2 gene in human cancers: non-random distribution of base substitutions. Genes Chromosom. Cancer 15, 77–88 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Smith-Sorensen, B. & Hovig, E. CDK2A (p16INK4A) somatic and germline mutations.Human Mutation 7, 294–303 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Miller, C.W. . et al. The p19INK4D cyclin dependent kinase inhibitor gene is altered in osteosarcoma. Oncogene 15, 231–235 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Gemma, A., et al. Molecular analysis of the cyclin-dependent kinase inhibitor genes 15INK4b/MTS2, pINK4/MTS1, p18 and p18 in human cancer cell lines. Int. J. Cancer 68, 605–611 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Lux, S., John, K. & Bennett, V. Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature 344, 36–42 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Michaely, P. & Bennett, V. The ANK repeat: a ubiquitous motif involved in macromolecular recognition. Trends Cell. Biol. 2, 127–130 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Bork, P. Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins 17, 363–374 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Pabo, C.O. & Sauer, R.T. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 61, 1053–1095 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Pines, J. Cyclins and cyclin-dependent kinases: theme and variations. Adv. Cancer Res. 66, 181–212 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Luh, F.Y. et al. Structure of the cyclin-dependent kinase inhibitor p19lnk4d. Nature 389, 999–1003 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Svetlana, G. & Pavletich, N.P. Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of p53BP2. Science 274, 1001–1005 (1996).

    Article  Google Scholar 

  24. Tevelev, A., et al. Tumor suppressor p16INK4: structural charcterization of wild-type and mutant proteins by NMR and circular dichroism. Biochemistry 35, 9475–9487 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Kalus, W., et al. NMR structural characterization of the CDK inhibitor pl9INK4d. FEBS Lett. 401, 127–132 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Yang, Y., Rao, S., Walker, E., Sen, S. & Qin, J. Nuclear magnetic resonance assignment and secondary structure of an ankyrin-like repeat-bearing protein: Myotrophin Protein Sci. 6, 1347–1351 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fahraeus, R., Paramio, J.M., Ball, K.L., Lain, S. & Lane, D.P. Inhibition of pRb phosphorylation and cell-cycle progression by a 20-residue peptide derived from p16CDKN2/INK4 curr. Biol. 6, 84–91 (1996).

    CAS  Google Scholar 

  28. Coleman, K.G., et al. Identification of CDK4 sequences involved in cyclin D1 and p16 binding. J. Biol. Chem. 272, 18869–18874 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Wolfel, T. . et al. A p16INK4a-insensitive CDK4 mutant targeted by Cytolytic T lymphocytes in a human melanoma. Science 269, 1281–1284 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. De Bondt, H.L. et al. Crystal structure of cyclin-dependent kinase 2. Nature 363, 595–602 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Russo, A.A., Jeffrey, P.O., Patten, A.K., Massague, J. & Pavletich, N.P. Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-CDK2 complex. Nature 382, 325–331 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Neidhardt, F.C., Bloch, P.L. & Smith, D.F. Culture medium for enterobacteria. J. Bacteriol. 119, 736–747 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Doublie, S. Preparation of selenomethionyl proteins for phase determination. Meth.Enz. 523–530 (1997).

  34. Kabsch, W. Automatic indexing of rotation diffraction patterns. J. Appl. Crystallogr. 21, 67–71 (1988).

    Article  CAS  Google Scholar 

  35. Kabsch, W. Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. Appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  36. Gewirth, D., Otwinowski, Z. & Minor, W. The HKL Version 1.0 manual (Yale University Press, New Haven, Connecticut; 1993).

    Google Scholar 

  37. Furey, W. & Swaminathan, S. PHASES: A program package for the processing and analysis of diffraction data from macromolecules. Meth. Enz. 277, 590–620 (1995).

    Article  Google Scholar 

  38. Jones, T.A. A graphics model building and refinement system for macromolecules. J. Appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  39. Jones, T.A. & Kjeldguard, M. Manual for O, version 6.1 (Aarhus University Press, Uppsula, Sweden; 1996).

    Google Scholar 

  40. Brunger, A.T. The free R value: a novel statistical quantity assessing the accuracy of crystal structures. Nature 335, 472–474 (1992).

    Article  Google Scholar 

  41. Brunger, A.T. . X-PLOR Manual, Version 3.8. (Yale University Press, New Haven, Connecticut; 1996).

    Google Scholar 

  42. Brunger, A.T., Kuriyan, J .& Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  CAS  PubMed  Google Scholar 

  43. Jiang, J.S. & Brunger, A.T. Protein hydration observed by X-ray diffraction: solvation properties of penicillopepsin and neuraminidase crystal structures. J. Mol. Biol. 243, 100–115 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Hodel, A., Kim, S.-H. & Brunger, A.T. Model bias in macromolecular crystal structures. Acta Crystallogr. A48, 851–858 (1992).

    Article  CAS  Google Scholar 

  45. Foulkes, W.D., Flanders, T.Y., Pollock, P.M. & Hayward, N.K. The CDKN2A (p16) gene and human cancer. Mol. Medicine 3, 5–20(1997).

    Article  CAS  Google Scholar 

  46. Kraulis, P.J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  47. Merritt, E.A. & Murphy, M.E.P. RASTER3D version 2.0: a program for photorealistic molecular graphics. Acta Crystallogr. D50, 869–873 (1994).

    CAS  Google Scholar 

  48. Nicholls, A., Sharp, K. & Honig, B. Protein folding ans association: insights from interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronen Marmorstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkataramani, R., Swaminathan, K. & Marmorstein, R. Crystal structure of the CDK4/6 inhibitory protein p18INK4c provides insights into ankyrin-like repeat structure/function and tumor-derived p16INK4 mutations. Nat Struct Mol Biol 5, 74–81 (1998). https://doi.org/10.1038/nsb0198-74

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0198-74

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing