Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solution structure of the fourth metal-binding domain from the Menkes copper-transporting ATPase

Abstract

Menkes disease is an X-linked disorder in copper transport that results in death during early childhood. The solution structures of both apo and Ag(l)-bound forms of the fourth metal-binding domain (mbd4) from the Menkes copper-transporting ATPase have been solved. The 72-residue mbd4 has a ferredoxin-like βαββαβ fold. Structural differences between the two forms are limited to the metal-binding loop, which is disordered in the apo structure but well ordered in the Ag(l)-bound structure. Ag(l) binds in a linear bicoordinate manner to the two Cys residues of the conserved GMTCxxC motif; Cu(l) likely coordinates in a similar manner. Menkes mbd4 is thus the first bicoordinate copper-binding protein to be characterized structurally. Sequence comparisons with other heavy-metal-binding domains reveal a conserved hydrophobic core and metal-binding motif.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vulpe, C.D. & Packman, S. Cellular copper transport. Ann. Rev. Nutrition 15, 293–322 (1995).

    Article  CAS  Google Scholar 

  2. Solioz, M. & Vulpe, C. CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem. Sci. 21, 237–241 (1996).

    Article  CAS  Google Scholar 

  3. Lutsenko, S. & Kaplan, J.H. Organization of P-type ATPases: significance of structural diversity. Biochemistry 34, 15607–15613 (1995).

    Article  CAS  Google Scholar 

  4. Pedersen, P.L. & Carafoli, E. Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends Biochem. Sci. 12, 146–150 (1987).

    Article  CAS  Google Scholar 

  5. Pedersen, P.L. & Carafoli, E. Ion motive ATPases. II. Energy coupling and work output. Trends Biochem. Sci. 12, 186–189 (1987).

    Article  CAS  Google Scholar 

  6. Vilsen, B., Andersen, J.P., Clarke, D.M. & MacLennan, D.H. Functional consequences of proline mutations in the cytoplasmic and transmembrane sectors of the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 264, 21024–21030 (1989).

    CAS  PubMed  Google Scholar 

  7. Silver, S., Nucifora, G., Chu, L. & Misra, T.K. Bacterial resistance ATPases: primary pumps for exporting toxic cations and anions. Trends Biochem. Sci. 14, 76–80 (1989).

    Article  CAS  Google Scholar 

  8. Sahlman, L. & Jonsson, B.-H. Purification and properties of the mercuric-ion-binding protein MerP. Eur. J. Biochem. 205, 375–381 (1992).

    Article  CAS  Google Scholar 

  9. Sahlman, L. & Skarfstad, E.G. Mercuric ion binding abilities of MerP variants containing only one cysteine. Biochem. Biophys. Res. Commun. 196, 583–588 (1993).

    Article  CAS  Google Scholar 

  10. Danks, D.M. in The Metabolic Basis of Inherited Disease (eds Scrives, C., Beaudet, A., Sly, W. & Valle, D.) 1411–1432 (McGraw-Hill, New York; 1989).

    Google Scholar 

  11. Vulpe, C., Levinson, B., Whitney, S., Packman, S. & Gitschier, J. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nature Genet. 3, 7–13 (1993).

    Article  CAS  Google Scholar 

  12. Chelly, J. et al. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nature Genet. 3, 14–19 (1993).

    Article  CAS  Google Scholar 

  13. Mercer, J.F. et al. Isolation of a partial candidate gene for Menkes disease by positional cloning. Nature Genet. 3, 20–25 (1993).

    Article  CAS  Google Scholar 

  14. Yamaguchi, Y., Heiny, M.E., Suzuki, M. & Gitlin, J.D. Biochemical characterization and intracellular localization of the Menkes disease protein. Proc. Natl. Acad. Sci. USA 93 14030–14035 (1996).

    Article  CAS  Google Scholar 

  15. Lutsenko, S., Petrukhin, K., Cooper, M.J., Gilliam, C.T. & Kaplan, J.H. N-terminal domains of human copper-transporting adenosine triphophatases (the Wilson's and Menkes disease proteins) bind copper selectively in vivo and in vitro with stoichiometry of one copper per metal-binding repeat. J. Biol. Chem. 272, 18939–18944 (1997).

    Article  CAS  Google Scholar 

  16. Packman, S., O'Toole, C., Price, D. & Thaler, M. Cadmium, zinc and copper metabolism in the Mottle mouse, an animal model for Menkes' kinky hair syndrome. J. Inorg. Biochem. 19, 203–211 (1983).

    Article  CAS  Google Scholar 

  17. Eriksson, P.-O. & Sahlman, L. 1H NMR studies of the mercuric ion binding protein MerP: sequential assignment, secondary structure and global fold of oxidized MerP. J. Biomol. NMR 3, 613–626 (1993).

    Article  CAS  Google Scholar 

  18. Steele, R.A. & Opella, J. Structures of the reduced and mercury-bound forms of MerP, the periplasmic protein from the bacterial mercury detoxification system. Biochemistry 36, 6885–6895 (1997).

    Article  CAS  Google Scholar 

  19. Wüthrich, K. NMR of Proteins and Nucleic Acids (John Wiley & Sons, Inc., New York, 1986).

    Book  Google Scholar 

  20. Laskowski, R.A., Rullman, J.A.C., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

  21. Murzin, A.G., Brenner, S.E., Hubbard, T. & Chothia, C. SCOP: A structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995).

    CAS  Google Scholar 

  22. Cotton, F.A. & Wilkinson, G. Advanced Inorganic Chemistry. A Comprehensive Text. Fourth Edition (John Wiley & Sons, Inc., New York; 1980).

    Google Scholar 

  23. Odermatt, A., Suter, H., Krapf, R. & Solioz, M. Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae . J. Biol. Chem. 268, 12775–12779 (1993).

    CAS  PubMed  Google Scholar 

  24. Bull, P.C., Thomas, G.R., Rommens, J.M., Forbes, J.R. & Cox, D.W. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nature Genet. 5, 327–337 (1993).

    Article  CAS  Google Scholar 

  25. Tanzi, R.E. et al. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nature Genet. 5, 344–350 (1993).

    Article  CAS  Google Scholar 

  26. Fu, D., Beeler, T.J. & Dunn, T.M. Sequence, mapping and disruption of CCC2, a gene that cross-complements the Ca2+-sensitive phenotype of csg1 mutants and encodes a P-type ATPase belonging to the Cu2+-ATPase subfamily. Yeast 11, 283–293 (1995).

    Article  CAS  Google Scholar 

  27. Lin, S.-J., Pufahl, R.A., Dancis, A., O'Halloran, T.V. & Culotta, V.C. A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J. Biol. Chem. 272, 9215–9220 (1997).

    Article  CAS  Google Scholar 

  28. Klomp, L.W.J. et al. Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J. Biol. Chem. 272, 9221–9226 (1997).

    Article  CAS  Google Scholar 

  29. Blencowe, D.K., Marshall, S.J. & Morby, A.P. Preliminary characterization of zntA, a gene that encodes a Zn(II)/Cd(II)-export protein in Escherichia coli . Biotechnology et alia 2, 1–6 (1997).

    Google Scholar 

  30. Pufahl, R.A. et al. Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278, 853–856 (1997).

    Article  CAS  Google Scholar 

  31. Adman, E.T. Copper protein structures. Adv. Protein Chem. 42, 145–197 (1991).

    Article  CAS  Google Scholar 

  32. Chang, C.N., Rey, M., Bochner, B., Heyneker, H. & Gray, G. High-level secretion of human growth hormone by Escherichia coli . Gene 55, 189–196 (1987).

    Article  CAS  Google Scholar 

  33. Carter, P., Nilsson, B., Burnier, J.P., Burdick, D. & Wells, J.A. Engineering subtilisin BPN' for site-specific proteolysis. Proteins 6, 240–248 (1989).

    Article  CAS  Google Scholar 

  34. Cavanagh, J., Fairbrother, W.J., Palmer, A.G., III & Skelton, N.J. Protein NMR spectroscopy: principles and practice (Academic Press, San Diego; 1995).

    Google Scholar 

  35. Hwang, T.-L. & Shaka, A.J. Water suppression that works. Excitation sculpting using arbitrary waveforms and pulsed field gradients. J. Magn. Reson. Ser. A, 112, 275–279 (1995).

    Article  Google Scholar 

  36. van Zijl, P.C.M., O'Neil-Johnson, M., Mori, S. & Hurd, R.E. Magic-angle-gradient double-quantum-filtered COSY. J. Magn. Reson. Ser. A, 113, 265–270 (1995).

    Article  Google Scholar 

  37. Jacobsen, N.E. et al. High-resolution solution structure of the EGF-like domain of heregulin-α. Biochemistry 35, 3402–3417 (1996).

    Article  CAS  Google Scholar 

  38. Starovasnik, M.A. et al. Solution structure of the E-domain of Staphylococcal protein A. Biochemistry 35, 15558–15569 (1996).

    Article  CAS  Google Scholar 

  39. Havel, T.F. An evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. Prog. Biophys. Mol. Biol. 56, 43–78 (1991).

    Article  CAS  Google Scholar 

  40. Weiner, S.J. et al. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106, 765–784 (1984).

    Article  CAS  Google Scholar 

  41. Weiner, S.J., Kollman, P.A., Nguyen, D.T. & Case, D.A. An all-atom force field for simulations of proteins and nucleic acids. J. Comput. Chem. 7, 230–252 (1986).

    Article  CAS  Google Scholar 

  42. Alien, F.H. & Kennard, O. 3D search and research using the Cambridge structural database. Chemical Design Automation News 8, 31–37 (1993).

    Google Scholar 

  43. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  44. Hyberts, S., Goldberg, M.S., Havel, T.F. & Wagner, G. The solution structure of eglin C based on measurements of many NOEs and coupling constants and its comparison with X-ray structures. Protein Sci. 1, 736–751 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gitschier, J., Moffat, B., Reilly, D. et al. Solution structure of the fourth metal-binding domain from the Menkes copper-transporting ATPase. Nat Struct Mol Biol 5, 47–54 (1998). https://doi.org/10.1038/nsb0198-47

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0198-47

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing