From Levinthal to pathways to funnels

A new view of protein folding kinetics replaces the idea of ‘folding pathways’ with the broader notions of energy landscapes and folding funnels. New experiments are needed to explore them.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Baldwin, R.L. Matching speed and stability. Nature 369, 183–184 (1994).

    CAS  Google Scholar 

  2. 2

    Baldwin, R.L. The nature of protein folding pathways: The classical versus the new view. J. Biomolec. NMR 5, 103–109 (1995).

    CAS  Google Scholar 

  3. 3

    Anfinsen, C.B., Haber, E., Sela, M. & White, F.H. Jr. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. USA 47, 1309–1314 (1961).

    CAS  Google Scholar 

  4. 4

    Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    CAS  Google Scholar 

  5. 5

    Levinthal, C. Are there pathways for protein folding? J. Chim. Phys. 65, 44–45 (1968).

    Google Scholar 

  6. 6

    Levinthal, C. in Mossbauer Spectroscopy in Biological Systems. Proceedings of a meeting held at Allerton house, Monticello, Illinois. (eds P. Debrunner, J. Tsibris, & E. Munck) 22–24 (University of Illinois Press, Urbana, Illinois, 1969).

    Google Scholar 

  7. 7

    Wetlaufer, D.B. Nucleation, rapid folding, and globular intrachain regions in proteins. Proc. Natl. Acad. Sci. USA 70, 697–701 (1973).

    CAS  PubMed  Google Scholar 

  8. 8

    Dill, K.A. Theory for the folding and stability of globular proteins. Biochemistry 24, 1501–1509 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Zwanzig, R., Szabo, A. & Bagchi, B. Levinthal's paradox. Proc. Natl. Acad. Sci. USA 89, 20–22 (1992).

    CAS  PubMed  Google Scholar 

  10. 10

    Ikai, A. & Tanford, C. Kinetic evidence for incorrectly folded intermediate states in the refolding of denatured proteins. Nature 230, 100–102 (1971).

    CAS  PubMed  Google Scholar 

  11. 11

    Tsong, T.Y., Baldwin, R.L. & Elson, E.L. The sequential unfolding of ribonucleases A: Detection of a fast initial phase in the kinetics of unfolding. Proc. Natl. Acad. Sci. USA 68, 2712–2715 (1971).

    CAS  PubMed  Google Scholar 

  12. 12

    Creighton, T.E. Conformational restrictions on the pathway of folding and unfolding of the pancreatic trypsin inhibitor. J. Mol. Biol. 113, 275–293 (1977).

    CAS  Google Scholar 

  13. 13

    Creighton, T.E. Experimental studies of protein folding and unfolding. Prog. Biophys. Mol. Biol. 33, 231–297 (1978).

    CAS  Google Scholar 

  14. 14

    Weissman, J.S. & Kim, P.S. Reexamination of the folding of BPTI: Predominance of native intermediates. Science 253, 1386–1393 (1991).

    CAS  Article  Google Scholar 

  15. 15

    Weissman, J.S. & Kim, P.S. Kinetic role of nonnative species in the folding of bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. USA 89, 9900–9904 (1992).

    CAS  Google Scholar 

  16. 16

    Brandts, J.F., Halvorson, H.R. & Brennan, M. Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry 14, 4953–4963 (1975).

    CAS  Google Scholar 

  17. 17

    Hagerman, P.J. Kinetic analysis of the reversible folding reactions of small proteins: Application to the folding of lysozyme and cytochrome c. Biopolymers 16, 731–747 (1977).

    CAS  PubMed  Google Scholar 

  18. 18

    Schmid, F.X. & Baldwin, R.L. Acid catalysis of the formation of the slow-folding species of RNase A: Evidence that the reaction is proline isomerization. Proc. Natl. Acad. Sci. USA 75, 4764–4768 (1978).

    CAS  Google Scholar 

  19. 19

    Kim, P.S. & Baldwin, R.L. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Ann. Rev. Biochem. 51, 459–489 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Kim, P.S. & Baldwin, R.L. Intermediates in the folding reactions of small proteins. Annu. Rev. Biochem. 59, 631–660 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Mann, C.J., Shao, X. & Matthews, C.R. Characterization of the slow folding reactions of trp aporepressor from Escherichia coli by mutational analysis of prolines and catalysis by a peptidyl-prolyl isomerase. Biochemistry 34, 14573–14580 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Englander, S.W. & Poulsen, A. Hydrogen-tritium exchange of the random chain polypeptide. Biopolymers 7, 329–393 (1969).

    Google Scholar 

  23. 23

    Woodward, C.K. & Rosenberg, A. Studies of hydrogen exchange in proteins. VI. Urea effects on RNase hydrogen exchange kinetics leading to a general model for hydrogen exchange from folded proteins. J. Biol. Chem. 246, 4114–4121 (1971).

    CAS  PubMed  Google Scholar 

  24. 24

    Englander, S.W., Downer, N.W. & Teitelbaum, H. Hydrogen exchange. Annu. Rev. Biochem. 41, 903–924 (1972).

    CAS  PubMed  Google Scholar 

  25. 25

    Woodward, C.K. & Hilton, B.D. Hydrogen exchange kinetics and internal motions in proteins and nucleic acids. Annu. Rev. Biophys. Bioeng. 8, 99–127 (1979).

    CAS  PubMed  Google Scholar 

  26. 26

    Bai, Y., Sosnick, T.R., Mayne, L. & Englander, S.W. Protein folding intermediates: Native-state hydrogen exchange. Science 269, 192–197 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Bai, Y. & Englander, S.W. Future directions in folding: The multi-state nature of protein structure. Proteins: Struct. Funct. Genet. 24, 145–151 (1996).

    CAS  Google Scholar 

  28. 28

    Balbach, J. et al. Following protein folding in real time using NMR spectroscopy. Nature Struct. Biol. 2, 865–870 (1995).

    CAS  Google Scholar 

  29. 29

    Udgaonkar, J.B. & Baldwin, R.L. NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A. Nature 335, 694–699 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Roder, H., Elöve, G.A. & Englander, S.W. Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature 335, 700–704 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Radford, S.E., Dobson, C.M. & Evans, P.A. The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature 358, 302–307 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Miranker, A., Robinson, C.V., Radford, S.E., Aplin, R.T. & Dobson, C.M. Detection of transient protein folding populations by mass spectrometry. Science 262, 896–900 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Radford, S.E. & Dobson, C.M. Insights into protein folding using physical techniques: Studies of lysozyme and α-lactalbumin. Phil. Trans. R. Soc. Lond. B348, 17–25 (1995).

    Google Scholar 

  34. 34

    Miranker, A., Robinson, C.V., Radford, S.E. & Dobson, C.M. Investigation of protein folding by mass spectrometry. Faseb J. 10, 93–101 (1996).

    CAS  PubMed  Google Scholar 

  35. 35

    Chen, B.-L., Baase, W.A. & Schellman, J.A. Low-temperature unfolding of a mutant of phage T4 lysozyme. 2. Kinetic investigations. Biochemistry 28, 691–699 (1989).

    CAS  Google Scholar 

  36. 36

    Matouschek, A., Kellis, J.T. Jr., Serrano, L., Bycroft, M. & Fersht, A.R. Transient folding intermediates characterized by protein engineering. Nature 346, 440–445 (1990).

    CAS  Google Scholar 

  37. 37

    Fersht, A.R. Characterizing transition states in protein folding: An essential step in the puzzle. Curr. Opin. Struct. Biol. 5, 79–84 (1995).

    CAS  Google Scholar 

  38. 38

    Neira, J.L. et al. Towards the complete structural characterization of a protein folding pathway: the structures of the denatured, transition and native states for the association/folding of two complementary fragments of cleaved chymotrypsin inhibitor 2. Direct evidence for a nucleation-condensation mechanism. Folding & Design 1, 189–208 (1996).

    CAS  Google Scholar 

  39. 39

    Jones, C.M. et al. Fast events in protein folding initiated by nanosecond laser photolysis. Proc. Natl. Acad. Sci. USA 90, 11860–11864 (1993).

    CAS  Google Scholar 

  40. 40

    Williams, S. et al. Fast events in protein folding: Helix melting and formation in a small peptide. Biochemistry 35, 691–697 (1996).

    CAS  Google Scholar 

  41. 41

    Pascher, T., Chesick, J.P., Winkler, J.R. & Gray, H.B. Protein folding triggered by electron transfer. Science 271, 1558–1560 (1996).

    CAS  Google Scholar 

  42. 42

    Miranker, A.D. & Dobson, C.M. Collapse and cooperativity in protein folding. Curr. Opin. Struct Biol. 6, 31–42 (1996).

    CAS  PubMed  Google Scholar 

  43. 43

    Jackson, S.E. & Fersht, A.R. Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry 30, 10428–10435 (1991).

    CAS  Google Scholar 

  44. 44

    Fersht, A.R. Optimization of rates of protein folding: The nucleation-condensation mechanism and its implications. Proc. Natl. Acad. Sci. USA 92, 10869–10873 (1995).

    CAS  Google Scholar 

  45. 45

    Sosnick, T.R., Mayne, L., Hiller, R. & Englander, S.W. The barriers in protein folding. Nature Struct. Biol. 1, 149–156 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Huang, G.S. & Oas, T.G. Submillisecond folding of monomeric λ represser. Proc. Natl. Acad. Sci. USA 92, 6878–6882 (1995).

    CAS  Google Scholar 

  47. 47

    Schindler, T., Herrler, M., Marahiel, M.A. & Schmid, F.X. Extremely rapid protein folding in the absence of intermediates. Nature Struct. Biol. 2, 663–673 (1995).

    CAS  Google Scholar 

  48. 48

    Sosnick, T.R., Mayne, L. & Englander, S.W. Molecular collapse: The rate-limiting step in two-state cytochrome c folding. Proteins: Struct. Funct. Genet. 24, 413–426 (1996).

    CAS  Google Scholar 

  49. 49

    Chan, H.S. & Dill, K.A. Polymer principles in protein structure and stability. Annu. Rev. Biophys. Biophys. Chem. 20, 447–490 (1991).

    CAS  PubMed  Google Scholar 

  50. 50

    Chan, H.S. & Dill, K.A. Comparing folding codes for proteins and polymers. Proteins: Struct. Funct. Genet. 24, 335–344 (1996).

    CAS  Google Scholar 

  51. 51

    Bryngelson, J.D., Onuchic, J.N., Socci, N.D. & Wolynes, P.G. Funnels, pathways and the energy landscape of protein folding: A synthesis. Proteins: Struct. Funct. Genet. 21, 167–195 (1995).

    CAS  Google Scholar 

  52. 52

    Wolynes, P.G., Onuchic, J.N. & Thirumalai, D. Navigating the folding routes. Science 267, 1619–1620 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Onuchic, J.N., Wolynes, P.G., Luthey-Schulten, Z. & Socci, N.D. Towards an outline of the topography of a realistic protein folding funnel. Proc. Natl. Acad. Sci. USA 92, 3626–3630 (1995).

    CAS  Google Scholar 

  54. 54

    Socci, N.D., Onuchic, J.N. & Wolynes, P.G. Diffusive dynamics of the reaction coordinate for protein folding funnels. J. Chem. Phys. 104, 5860–5868 (1996).

    CAS  Google Scholar 

  55. 55

    Dill, K.A. The stabilities of globular proteins. In Protein Engineering (eds Oxender, D. L. & Fox, C. F.) 187–192 (Alan R. Liss, Inc., New York, 1987).

    Google Scholar 

  56. 56

    Bryngelson, J.D. & Wolynes, P.G. Intermediates and barrier crossing in a random energy model (with applications to protein folding). J. Phys. Chem. 93, 6902–6915 (1989).

    CAS  Google Scholar 

  57. 57

    Shakhnovich, E.I., Farztdinov, G., Gutin, A.M. & Karplus, M. Protein folding bottlenecks: A lattice Monte Carlo simulation. Phys. Rev. Lett. 67, 1665–1668 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Camacho, C.J. & Thirumalai, D. Kinetics and thermodynamics of folding in model proteins. Proc. Natl. Acad. Sci. USA 90, 6369–6372 (1993).

    CAS  PubMed  Google Scholar 

  59. 59

    Chan, H.S. & Dill, K.A. Transition states and folding dynamics of proteins and heteropolymers. J. Chem. Phys. 100, 9238–9257 (1994).

    Google Scholar 

  60. 60

    Socci, N.D. & Onuchic, J.N. Folding kinetics of protein-like heteropolymers. J. Chem. Phys. 101, 1519–1528 (1994).

    CAS  Google Scholar 

  61. 61

    Abkevich, V.I., Gutin, A.M. & Shakhnovich, E.I. Free energy landscape for protein folding kinetics: Intermediates, traps, and multiple pathways in theory and lattice model simulations. J. Chem. Phys. 101, 6052–6062 (1994).

    CAS  Google Scholar 

  62. 62

    Šali, A., Shakhnovich, E. & Karplus, M. How does a protein fold? Nature 369, 248–251 (1994).

    Google Scholar 

  63. 63

    Dill, K.A. et al. Principles of protein folding—A perspective from simple exact models. Protein Sci. 4, 561–602 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Hao, M.-H. & Scheraga, H.A. Statistical thermodynamics of protein folding: Sequence dependence. J. Phys. Chem. 98, 9882–9893 (1994).

    CAS  Google Scholar 

  65. 65

    Hao, M.-H. & Scheraga, H.A. How optimization of potential functions affects protein folding. Proc. Natl. Acad. Sci. USA 93, 4984–4989 (1996).

    CAS  PubMed  Google Scholar 

  66. 66

    Bryngelson, J.D. & Wolynes, P.G. Spin-glass and the statistical mechanics of protein folding. Proc. Natl. Acad. Sci. USA 84, 7524–7528 (1987).

    CAS  Google Scholar 

  67. 67

    Leopold, P.E., Montal, M. & Onuchic, J.N. Protein folding funnels: A kinetic approach to the sequence-structure relationship. Proc. Natl. Acad. Sci. USA 89, 8721–8725 (1992).

    CAS  Google Scholar 

  68. 68

    Guo, Z. & Thirumalai, D. Kinetics of protein folding: Nucleation mechanism, time scales, and pathways. Biopolymers 36, 83–102 (1995).

    CAS  Google Scholar 

  69. 69

    Socci, N.D. & Onuchic, J.N. Kinetic and thermodynamic analysis of proteinlike heteropolymers: Monte Carlo histogram technique. J. Chem. Phys. 103, 4732–4744 (1995).

    CAS  Google Scholar 

  70. 70

    Thirumalai, D. From minimal models to real proteins: Time scales for protein folding kinetics. J. Phys. 15, 1457–1467 (1995).

    Google Scholar 

  71. 71

    Mirny, L.A., Abkevich, V. & Shakhnovich, E.I. Universality and diversity of the protein folding scenarios: A comprehensive analysis with the aid of a lattice model. Folding & Design 1, 103–116 (1996).

    CAS  Google Scholar 

  72. 72

    Thirumalai, D. & Woodson, S.A. Kinetics of folding of proteins and RNA. Ace. Chem. Res. 29, 433–439 (1996).

    CAS  Google Scholar 

  73. 73

    Chan, H.S. & Dill, K.A. Protein folding kinetics from the perspectives of simple models. Proteins: Struct. Funct. Genet. in the press.

  74. 74

    Chan, H.S. & Dill, K.A. Energy landscapes and the collapse dynamics of homopolymers. J. Chem. Phys. 99, 2116–2127 (1993).

    CAS  Google Scholar 

  75. 75

    Kuroda, Y., Hamada, D., Tanaka, T. & Goto, Y. High helicity of peptide fragments corresponding to β-strand regions of β-lactoglobulin observed by 2D-NMR spectroscopy. Folding & Design 1, 243–251 (1996).

    Google Scholar 

  76. 76

    Hamada, D., Segawa, S.-I. & Goto, Y. Non-native α-helical intermediate in the refolding of β-lactoglobulin, a predominantly β-sheet protein. Nature Struct. Biol. 3, 868–873 (1996).

    CAS  Google Scholar 

  77. 77

    Landry, S.J. & Gierasch, L.M. Polypeptide interactions with molecular chaperones and their relationship to in vivo protein folding. Annu. Rev. Biophys. Biomol. Struct. 23, 645–669 (1994).

    CAS  PubMed  Google Scholar 

  78. 78

    Hlodan, R. & Hartl, F.U. in Mechanisms of Protein Folding (ed. R.H. Pain) 194–228 (Oxford University Press, New York, 1994).

    Google Scholar 

  79. 79

    Thirumalai, D. in Statistical Mechanics, Protein Structure, and Protein-Substrate Interactions (ed. S. Doniach) 115–134 (Plenum, New York, 1994).

    Google Scholar 

  80. 80

    Chan, H.S. & Dill, K.A. A simple model of chaperonin-mediated protein folding. Proteins: Struct. Funct. Genet. 24, 345–351 (1996).

    CAS  Google Scholar 

  81. 81

    Todd, M.J., Lorimer, G.H. & Thirumalai, D. Chaperonin-facilitated protein folding: Optimization of rate and yield by an iterative annealing mechanism. Proc. Natl. Acad. Sci. USA 93, 4030–4035 (1996).

    CAS  PubMed  Google Scholar 

  82. 82

    Sfatos, C.D., Gutin, A.M., Abkevich, V.I. & Shakhnovich, E.I. Simulations of chaperone-assisted folding. Biochemistry 35, 334–339 (1996).

    CAS  PubMed  Google Scholar 

  83. 83

    Gutin, A.M., Abkevich, V.I. & Shakhnovich, E.I. Is burst hydrophobic collapse necessary for protein folding? Biochemistry 34, 3066–3076 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Shrivastava, I., Vishveshwara, S., Cieplak, M., Maritan, A. & Banavar, J.R. Lattice model for rapidly folding protein-like heteropolymers. Proc. Natl. Acad. Sci. USA 92, 9206–9209 (1995).

    CAS  PubMed  Google Scholar 

  85. 85

    Klimov, D.K. & Thirumalai, D. A criterion that determines the foldability of proteins. Phys. Rev. Lett. 76, 4070–4073 (1996).

    CAS  PubMed  Google Scholar 

  86. 86

    Klimov, D.K. & Thirumalai, D. Factors governing the foldability of proteins. Proteins: Struct. Funct. Genet. In the press.

  87. 87

    Hill, T.L. Effect of rotation on the diffusion-controlled rate of ligand-protein association. Proc. Natl. Acad. Sci. USA 72, 4918–4922 (1975).

    CAS  PubMed  Google Scholar 

  88. 88

    Hill, T.L. Diffusion frequency factors in some simple examples of transition-state rate theory. Proc. Natl. Acad. Sci. USA 73, 679–683 (1976).

    CAS  PubMed  Google Scholar 

  89. 89

    Steinfeld, J.I., Francisco, J.S. & Hase, W.L. Chemical Kinetics and Dynamics (Prentice-Hall, Englewood Cliffs, New Jersey, 1989).

    Google Scholar 

  90. 90

    Zhou, H.-X. & Zwanzig, R. A rate process with an entropy barrier. J. Chem. Phys. 94, 6147–6152 (1991).

    CAS  Google Scholar 

  91. 91

    Tanford, C. Protein denaturation. Adv. Protein Chem. 23, 121–282 (1968).

    CAS  PubMed  Google Scholar 

  92. 92

    Matthews, C.R., Crisanti, M.M., Manz, J.T. & Gepner, G.L. Effects of a single amino acid substitution on the folding of the α-subunit of tryptophan synthase. Biochemistry 22, 1445–1452 (1983).

    CAS  Google Scholar 

  93. 93

    Segawa, S.-I. & Sugihara, M. Characterization of the transition state of lysozyme unfolding. I. Effect of protein-solvent interactions on the transition state. Biopolymers 23, 2473–2488 (1984).

    CAS  Google Scholar 

  94. 94

    Chen, B.-L., Baase, W.A., Nicholson, H. & Schellman, J.A. Folding kinetics of T4 lysozyme and nine mutants at 12 °C. Biochemistry 31, 1464–1476 (1992).

    CAS  Google Scholar 

  95. 95

    Shortle, D., Chan, H.S. & Dill, K.A. Modeling the effects of mutations on the denatured states of proteins. Protein Sci. 1, 201–215 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Chan, H.S. Kinetics of protein folding. Nature 373, 664–665 (1995).

    CAS  PubMed  Google Scholar 

  97. 97

    Unger, R. & Moult, J. Local interactions dominate folding in a simple protein model. J. Mol. Biol. 259, 988–994 (1996).

    CAS  PubMed  Google Scholar 

  98. 98

    Fukugita, M., Lancaster, D. & Mitchard, M.G. A heteropolymer model study for the mechanism of protein folding. Biopolymers, in the press.

  99. 99

    Dill, K.A., Fiebig, K.M. & Chan, H.S. Cooperativity in protein folding kinetics. Proc. Natl. Acad. Sci. USA 90, 1942–1946 (1993).

    CAS  Google Scholar 

  100. 100

    Abkevich, V.I., Gutin, A.M. & Shakhnovich, E.I. Specific nucleus as the transition state for protein folding: Evidence from the lattice model. Biochemistry 33, 10026–10036 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Onuchic, J.N., Socci, N.D., Luthey-Schulten, Z. & Wolynes, P.G. Protein folding funnels: The nature of the transition state ensemble. Folding & Design, in the press.

  102. 102

    Kiefhaber, T. & Baldwin, R.L. Kinetics of hydrogen bond breakage in the process of unfolding of ribonuclease A measured by pulsed hydrogen exchange. Proc. Natl. Acad. Sci. USA 92, 2657–2661 (1995).

    CAS  PubMed  Google Scholar 

  103. 103

    Hoeltzli, S.D. & Frieden, C. Stopped-flow NMR spectroscopy: Real-time unfolding studies of 6-19F-tryptophan-labeled Escherichia coli dihydrofolate reductase. Proc. Natl. Acad. Sci. USA 92, 9318–9322 (1995).

    CAS  Google Scholar 

  104. 104

    Hvidt, A. & Nielsen, S.O. Hydrogen exchange in proteins. Adv. Protein Chem. 21, 287–386 (1966).

    CAS  Google Scholar 

  105. 105

    Miller, D.W. & Dill, K.A. A statistical mechanical model for hydrogen exchange in globular proteins. Protein Sci. 4, 1860–1873 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Alonso, D.O.V. & Dill, K.A. Solvent denaturation and stabilization of globular proteins. Biochemistry 30, 5974–5985 (1991).

    CAS  Google Scholar 

  107. 107

    Dill, K.A., Alonso, D.O.V. & Hutchinson, K. Thermal stabilities of globular proteins. Biochemistry 28, 5439–5449 (1989).

    CAS  PubMed  Google Scholar 

  108. 108

    Hagen, S.J., Hofrichter, J., Szabo, A. & Eaton, W.A. Diffusion-limited contact formation in unfolded cytochrom c: Estimating the maximum rate of protein folding. Proc. Natl. Acad. Sci. USA 93, 11615–11617 (1996).

    CAS  Google Scholar 

  109. 109

    McCammon, J.A. A speed limit for protein folding. Proc. Natl. Acad. Sci. USA 93, 11426–11427 (1996).

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dill, K., Chan, H. From Levinthal to pathways to funnels. Nat Struct Mol Biol 4, 10–19 (1997). https://doi.org/10.1038/nsb0197-10

Download citation

Further reading