Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A canonical structure for the ligand-binding domain of nuclear receptors

An Erratum to this article was published on 01 February 1996

Abstract

The ability of nuclear receptors (NRs) to activate transcription of target genes requires the binding of cognate ligands to their ligand-binding domains (LBDs). Information provided by the three-dimensional structures of the unliganded RXRα and the liganded RARγ LBDs has been incorporated into a general alignment of the LBDs of all NRs. A twenty amino-acid region constitutes a NR-specif ic signature and contains most of the conserved residues that stabilize the core of the canonical fold of NR LBDs. A common ligand-binding pocket, involving predominantly hydrophobic residues, is inferred by homology modelling of the human RXRα and glucocorticoid receptor ligand-binding sites according to the RARγ holo-LBD structure. Mutant studies support these models, as well as a general mechanism for ligand-induced activation deduced from the comparison of the transcriptionally active RARγ holo- and inactive RXRα apo-LBD structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gronemeyer, H. & Laudet, V., Nuclear Receptors. Protein Profile 2, (Academic Press, 1995), in the press.

    Google Scholar 

  2. Green, S. & Chambon, P. Nuclear receptors enhance our understanding of transcription regulation. Trends Genet 4, 309–314 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Evans, R.M. The steroid and thyroid hormone receptor superfamily. Science 240, 889–895 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gronemeyer, H. Transcription activation by estrogen and progesterone receptors. A. Rev. Genet. 25, 89–123 (1991).

    Article  CAS  Google Scholar 

  5. Leid, M., Kastner, P. & Chambon, P. Multiplicity generates diversity in the retinoic acid signalling pathways. Trends Biochem. Sci. 17, 427–433 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Chambon, P. The retinoid signalling pathway: molecular and genetic analysis. Semin. Cell Biol. 5, 115–125 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Saatcioglu, F., Claret, F.X. & Karin, M. Negative transcriptional regulation by nuclear receptors. Sem. Cancer Biol. 5, 347–359 (1994).

    CAS  Google Scholar 

  8. Dey, A., Minucci, S. & Ozato, K. Ligand-dependent occupancy of the retinoic acid receptor beta 2 promoter in vivo. Mol. cell. Biol. 14, 8191–8201 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Truss, M., Bartsch, J. & Beato, M. Antiprogestins prevent progesterone receptor binding to hormone responsive elements in vivo. Proc. natn. Acad. Sci. U.S.A. 91, 11333–11337 (1994).

    Article  CAS  Google Scholar 

  10. Zenke, M., Munoz, A., Sap, J., Vennström, B. & Beug, H. V-erba oncogene activation entails the loss of hormone-dependent regulator activity of c-erbA. Cell 61, 1035–1049 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Danielian, P.S., White, R., Lees, J.A. & Parker, M.G. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J. 11, 1025–1033 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barretino, D., Vivanco-Ruiz, M.d.M. & Stunnenberg, H.G. Characterization of the ligand-dependent transactivation domain of thyroid hormone receptor. EMBO J. 13, 3039–3049 (1994).

    Article  Google Scholar 

  13. Durand, B. et al. Activation function 2 (AF-2) of RAR and RXR: presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity. EMBO J. 13, 5370–5382 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leng, X. et al. Mouse retinoid X receptor contains a separable ligand-binding and transactivation domain in its E region. Mol. cell. Biol. 15, 255–263 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Halachmi, S. et al. Oestrogen receptor-associated proteins: possible mediators of hormone-induced transcription. Science 264, 1455–1458 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Cavaillès, V., Dauvois, S., Danielian, P.S. & Parker, M.G. Interaction of proteins with transcriptionally active estrogen receptors. Proc. natn. Acad. Sci. U.S.A. 91, 10009–10013 (1994).

    Article  Google Scholar 

  17. Cavaillès, V. et al. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J. 14, 3741–3751 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  18. LeDouarin, B. et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J. 14, 2020–2033 (1995).

    Article  CAS  Google Scholar 

  19. Lee, J.W., Ryan, F., Swaffield, J.C., Johnston, S.A. & Moore, D.A. Interaction of thyroid-hormone receptor with a conserved transcriptional mediator. Nature 374, 91–94 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Vom Baur, E. et al. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J. in the press.

  21. Hörlein, A.J. et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–403 (1995).

    Article  PubMed  Google Scholar 

  22. Kurokawa, R. et al. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 377, 451–454 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, J.D. & Evans, R.M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–457 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Gronemeyer, H. & Moras, D. How to finger DNA. Nature 375, 190–191 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H. & Moras, D. Crystal structure of the ligand-binding domain of the human nuclear receptor RXRa. Nature 375, 377–382 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Renaud, J.P. et al. D Crystal structure of the RARg ligand-binding domain bound to all-trans retinoic acid. Nature in the press.

  27. Laudet, V., Hanni, C., Coll, J., Catzeflis, F. & Stehelin, D. Evolution of the nuclear receptor gene superfamily. EMBO J. 11, 1003–1013 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koelle, M.R. et al. The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell 67, 59–77 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Program Manual for the Wisconsin Package, Version 8, September 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711.

  30. Lee, S. et al. A somatic cell genetic method for identification of untargeted mutations in the glucocorticoid receptor that cause hormone binding deficiencies. Molec. Endocrinol. 9, 826–837 (1995).

    CAS  Google Scholar 

  31. Benhamou, B. et al. A single amino acid that determines the sensitivity of progesterone receptors to RU486. Science 255, 206–209 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Sultan, C., Lumbroso, S., Poujol, N., Belon, C., Boudon, C. & Lobaccaro, J.M. Mutation of androgen receptor gene in androgen insensitivity syndromes. J. Steroid Biochem. molec. Biol. 46, 519–530 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Carlstedt Duke, J. et al. Identification of hormone-interacting amino acid residues within the steroid-binding domain of the glucocorticoid receptor in relation to other steroid hormone receptors. J. biol. Chem. 263, 6842–6848 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Strömstedt, P.E., Berkenstam, A., Jörnvall, H., Gustafsson, J.A. & Carlstedt-Duke, J. Radiosequence analysis of the human progestin receptor charged with [3H]promegestone. J. biol. Chem. 265, 12973–12977 (1990).

    Article  PubMed  Google Scholar 

  35. Yarbrough, W.G. et al. A single base insertion in the androgen receptor gene causes androgen insensitivity in the testicular feminized rat. J. biol. Chem. 265, 8893–8900 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Weiss, R.E. & Refetoff, S. Thyroid hormone resistance. A. Rev. Med. 43, 363–375 (1992).

    Article  CAS  Google Scholar 

  37. Byravan, S. et al. Two point mutations in the hormone binding domain of the mouse glucocorticoid receptor that dramatically reduce its function. Molec. Endocrinol. 5, 752–758 (1991).

    Article  CAS  Google Scholar 

  38. Veldscholte, J. et al. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun. 173, 534–540 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Bhat, M.K., McPhie, P., Ting, Y.T., Zhu, X-G. & Cheng, S-Y. Structure of the carboxy-terminal region of thyroid hormone nuclear receptors and its possible role in hormone-dependent intermolecular interactions. Biochemistry 34, 10591–10599 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Ashraf, J. & Thompson, E.B. Identification of the activation-labile gene: a single point mutation in the human glucocorticoid receptor presents as two major phenotypes. Molec. Endocrinol. 7, 631–642 (1993).

    CAS  Google Scholar 

  41. Leid, M. Ligand-induced alteration of the protease sensitivity of retinoid X receptor alpha. biol. Chem. 269, 14175–14181 (1994).

    Article  CAS  Google Scholar 

  42. Thompson, J.D., Higgins, D.G. & Gibson, T.J. ClustalW: improving the sensitivity of progessive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Henikoff, S. & Henikoff, J.G. Amino acid substitution matrices from protein blocks. Proc. natn. Acad. Sci.U.S.A. 89, 10915–10919 (1992).

    Article  CAS  Google Scholar 

  44. Pierrat, B., Heery, D.M., Chambon, P. & Losson, R. A highly conserved region in the hormone-binding domain of the human estrogen receptor functions as an efficient transactivation domain in yeast. Gene 143, 193–200 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Milhon, J., Kohli, K. & Stallcup, M.R. Genetic analysis of the N-terminal end of the glucocorticoid receptor hormone binding domain. J. Steroid Biochem. molec. Biol. 51, 11–19, (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Vriend, G. A molecular modelling and drug design program. J. molec. Graph. 8, 52–56 (1990).

    Article  CAS  Google Scholar 

  47. Rohrer, D.C. & Duax, W.L. 9a-Fluoro-16a-Methyl-11b,17a,21-Trihydroxy-1,4-pregnadiene-3,20-dione[Dexamethasone](C22H29FO5). Cryst. struct. Commun. 6, 123–126 (1977).

    CAS  Google Scholar 

  48. Zechel, C., Shen, X.Q., Chambon, P. & Gronemeyer, H. Dimerization interfaces formed between the DNA binding domains determine the cooperative binding of RXR/RAR and RXR/TR heterodimersto DR5 and DR4 elements. EMBO J. 13, 1414–1424 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bourguet, W. et al. Purification, functional characterization, and crystallization of ligand-binding domain of the retinoid X receptor. Protein Expr. Pur. 6, 604–608 (1995)

    Article  CAS  Google Scholar 

  50. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plot plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  51. Merritt, E.A. & Murphy, M.E.P Raster3D version 2.0, a program for photorealistic molecular graphics. Acta Crystollagr. D50, 869–873 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wurtz, JM., Bourguet, W., Renaud, JP. et al. A canonical structure for the ligand-binding domain of nuclear receptors. Nat Struct Mol Biol 3, 87–94 (1996). https://doi.org/10.1038/nsb0196-87

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0196-87

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing