Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a novel extracellular Ca2+-binding module in BM-40

The EF-hand is a highly conserved Ca2+-binding motif found in many cytosolic Ca2+-modulated proteins. Here we report the crystal structure at 2.0 Å resolution of the carboxy-terminal domain of human BM-40 (SPARC, osteonectin), an extracellular matrix protein containing an EF-hand pair. The two EF-hands interact canonically but their detailed structures are unusual. In the first EF-hand a one-residue insertion is accommodated by a cis-peptide bond and by substituting a carboxylate by a peptide carbonyl as a Ca2+ ligand. The second EF-hand is stabilized by a disulphide bond. The EF-hand pair interacts tightly with an amphiphilic amino-terminal helix, reminiscent of target peptide binding by calmodulin. The present structure defines a novel protein module occurring in several other extracellular proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Nakayama, S. & Kretsinger, R.H. Evolution of the EF-hand family of proteins. Annu. Rev. Biophys. biomolec. Struct. 23, 473–507 (1994).

    CAS  Google Scholar 

  2. Kretsinger, R.H., Tolbert, D., Nakayama, S. & Pearson, W., The EF-hand, homologs and analogs. In Novel calcium binding proteins (ed Heizmann, C.W.) 17–37 (Springer, Berlin, 1991).

    Google Scholar 

  3. Strynadka, N.C.J. & James, M.N.G. Crystal structures of the helix-loop-helix calcium-binding proteins. A. Rev. Biochem. 58, 951–998 (1989).

    CAS  Google Scholar 

  4. McPhalen, C.A., Strynadka, N.C.J. & James, M.N.G. Calcium-binding sites in proteins: a structural perspective. Adv. Prot. Chem. 42, 77–144 (1991).

    CAS  Google Scholar 

  5. Kretsinger, R.H. & Nockolds, C.E. Carp muscle calcium-binding protein: structure determination and general description. J. biol. Chem. 9, 3313–3326 (1973).

    Google Scholar 

  6. Finn, B.E. & Forsén, S. The evolving model of calmodulin structure, function and activation. Structure 3, 7–11 (1995).

    CAS  PubMed  Google Scholar 

  7. Crivici, A. & Ikura, M. Molecular and structural basis of target recognition by calmodulin. A. Rev. Biophys. biomol. Struct. 24, 85–116 (1995).

    CAS  Google Scholar 

  8. Falke, J.J., Drake, S.K., Hazard, A.L. & Peersen, O.B. Molecular tuning of ion binding to calcium signaling proteins. Quart. Rev. Biophys. 27, 219–290 (1994).

    CAS  Google Scholar 

  9. Engel, J., Taylor, W., Paulsson, M., Sage, H. & Hogan, B. Calcium-binding domains and calcium-induced conformational transition of SPARC/BM-40/osteonectin, an extracellular glycoprotein expressed in mineralized and nonmineralized tissues. Biochemistry 26, 6958–6965 (1987).

    CAS  PubMed  Google Scholar 

  10. Bolander, M.E., Young, M.F., Fisher, L.W., Yamada, Y. & Termine, J.D. Osteonectin cDNA sequence reveals potential binding regions for calcium and hydroxyapatite and shows homologies with both a basement membrane protein (SPARC) and a serine protease inhibitor (ovomucoid). Proc. natn. Acad. Sci. U.S.A. 85, 2919–2923 (1988).

    CAS  Google Scholar 

  11. Pottgieser, J. et al. Changes in calcium and collagen IV binding caused by mutations in the EF hand and other domains of extracellular matrix protein BM-40 (SPARC, osteonectin). J. molec. Biol. 238, 563–574 (1994).

    Google Scholar 

  12. Termine, J.D. et al. Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26, 99–105 (1981).

    CAS  PubMed  Google Scholar 

  13. Mason, I.J., Taylor, A., Williams, J.G., Sage, H. & Hogan, B.L.M. Evidence from molecular cloning that SPARC, a major product of mouse embryo parietal endoderm, is related to an endothelial cell ‘culture shock’ glycoprotein of Mr 43 000. EMBO J. 5, 1465–1472 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mann, K., Deutzmann, R., Paulsson, M. & Timpl, R. Solubilization of protein BM-40 from a basement membrane tumour with chelating agents and evidence for its identity with osteonectin and SPARC. FEBS Lett. 218, 167–172 (1987).

    CAS  PubMed  Google Scholar 

  15. Lane, T.F. & Sage, H. The biology of SPARC, a protein that modulates cell-matrix interactions. FASEB J. 8, 163–173 (1994).

    CAS  PubMed  Google Scholar 

  16. Schwarzbauer, J.E. & Spencer, C.S., The Caenorhabditis elegans homologue of the extracellular calcium binding protein SPARC/osteonectin affects nematode body morphology and mobility. Molec. Biol. Cell 4, 941–952 (1993).

    CAS  PubMed  Google Scholar 

  17. Purcell, L., Gruia-Gray, J., Scanga, S. & Ringuette, M. Developmental anomalies of Xenopus embryos following microinjection of SPARC antibodies. J. exp. Zool. 265, 153–164 (1993).

    CAS  PubMed  Google Scholar 

  18. Patthy, L. Modular exchange principles in proteins. Curr. Opin. struct. Biol. 1, 351–361 (1991).

    CAS  Google Scholar 

  19. Maurer, P. et al. High-affinity and low-affinity calcium binding and stability of the multidomain extracellular 40-kDa basement membrane glycoprotein (BM-40/SPARC/osteonectin). Eur. J. Biochem. 205, 233–240 (1992).

    CAS  PubMed  Google Scholar 

  20. Maurer, P. et al. The C-terminal portion of BM-40 (SPARC/osteonectin) is an autonomously folding and crystallisable domain which binds calcium and collagen IV. J. molec. Biol. 253, 347–357 (1995).

    CAS  PubMed  Google Scholar 

  21. Sage, E.H., Bassuk, J.A., Yost, J.C., Folkman, M.J. & Lane, T.F. Inhibition of endothelial cell proliferation by SPARC is mediated through a Ca2+-binding EF-hand sequence. J. cell. Biochem. 57, 127–140 (1995).

    CAS  PubMed  Google Scholar 

  22. Mayer, U., Aumailley, M., Mann, K., Timpl, R. & Engel, J. Calcium-dependent binding of basement membrane protein BM-40 (osteonectin, SPARC) to basement membrane collagen type IV. Eur. J. Biochem. 198, 141–150 (1991).

    CAS  PubMed  Google Scholar 

  23. Xie, X. et al. Structure of the regulatory domain of scallop myosin at 2.8 Å resolution. Nature 368, 306–312 (1994).

    CAS  PubMed  Google Scholar 

  24. Flaherty, K.M., Zozulya, S., Stryer, L. & McKay, D.B. Three-dimensional structure of recoverin, a calcium sensor in vision. Cell 75, 709–716 (1993).

    CAS  PubMed  Google Scholar 

  25. Cook, W.J., Ealick, S.E., Babu, Y.S., Cox, J.A. & Vijay-Kumar, S. Three-dimensional structure of a sarcoplasmic calcium-binding protein from Nereis diversicolor. J. biol. Chem. 266, 652–656 (1991).

    CAS  PubMed  Google Scholar 

  26. Szebenyi, D.M., Obendorf, S.K. & Moffat, K. Structure of vitamin D-dependent calcium-binding protein from bovine intestine. Nature 294, 327–333 (1981).

    CAS  PubMed  Google Scholar 

  27. Chattopadhyaya, R., Meador, W.E., Means, A.R. & Quiocho, F.A. Calmodulin structure refined at 1.7 Å. J. molec. Biol. 228, 1177–1192 (1992).

    CAS  PubMed  Google Scholar 

  28. Ikura, M. et al. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256, 632–638 (1992).

    CAS  PubMed  Google Scholar 

  29. Meador, W.E., Means, A.R. & Quiocho, F.A. Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex. Science 257, 1251–1255 (1992).

    CAS  PubMed  Google Scholar 

  30. Zhang, M., Tanaka, T & Ikura, M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nature struct. Biology 2, 758–767 (1995).

    CAS  Google Scholar 

  31. Kuboniwa, H. et al. Solution structure of calcium-free calmodulin. Nature struct. Biology 2, 768–776 (1995).

    CAS  Google Scholar 

  32. Finn et al. Calcium-induced structural changes and domain autonomy in calmodulin. Nature struct. Biology 2, 777–783 (1995).

    CAS  Google Scholar 

  33. Clezardin, P. et al. Complex formation of human thrombospondin with osteonectin. Eur. J. Biochem. 175, 275–284 (1988).

    CAS  PubMed  Google Scholar 

  34. Griffith, J.P. et al. X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex. Cell 82, 507–522 (1995).

    CAS  PubMed  Google Scholar 

  35. Doolittle, R.F. The multiplicity of domains in proteins. A. Rev. Biochem. 64, 287–314 (1995).

    CAS  Google Scholar 

  36. Guermah, M. et al. Transcription of a quail gene expressed in embryonic retinal cells is shut off sharply at hatching. Proc. natn. Acad. Sci. U.S.A. 88, 4503–4507 (1991).

    CAS  Google Scholar 

  37. Johnston, I.G., Paladino, T., Gurd, J.W. & Brown, I.R. Molecular cloning of SC1: a putative brain extracellular matrix glycoprotein showing partial similarity to osteonectin/BM-40/SPARC. Neuron 2, 165–176 (1990).

    Google Scholar 

  38. Alliel, P.M., Perin, J.P., Jolles, P. & Bonnet, F.J., Testican, a multidomain testicular proteoglycan resembling modulators of cell social behaviour. Eur. J. Biochem. 214, 347–350 (1993).

    CAS  PubMed  Google Scholar 

  39. Shibanuma, M., Mashimo, J., Mita, A., Kuroki, T. & Nose, K. Cloning from a mouse osteoblastic cell line of a set of transforming growth factor β1-regulated genes, one of which seems to encode a follistatin-related polypeptide. Eur. J. Biochem. 217, 13–19 (1993).

    CAS  PubMed  Google Scholar 

  40. Shapiro, L. et al. Structural basis of cell-cell adhesion by cadherins. Nature 374, 327–337 (1995).

    CAS  PubMed  Google Scholar 

  41. Rao, Z. et al. The structure of a Ca2+-binding epidermal growth factor-like domain: its role in protein-protein interactions. Cell 82, 131–141 (1995).

    CAS  PubMed  Google Scholar 

  42. Wendel, M., Sommarin, Y., Bergman, T. & Heinegård, D. Isolation, characterization, and primary structure of a calcium-binding 63-kDa bone protein. J. biol. Chem. 270, 6125–6133 (1995).

    CAS  PubMed  Google Scholar 

  43. Leslie, A.G.W. MOSFLM Users Guide (MRC-LMB, Cambridge, 1994).

    Google Scholar 

  44. Collaborative Computing Project No. 4. The CCP4 suite: programs for protein crystallography. Acta crystallogr. D50, 760–763 (1994).

  45. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta crystallogr. A47, 110–119 (1991).

    CAS  Google Scholar 

  46. Brünger, A.T. X-PLOR Version 3.1 A System for Crystallography and NMR (Yale Univ. Press, New Haven, CT, 1992).

    Google Scholar 

  47. Carson, M. Ribbon models of macromolecules. J. molec. Graphics 5, 103–106 (1987).

    CAS  Google Scholar 

  48. Lankat-Buttgereit, B., Mann, K., Deutzmann, R., Timpl, R. & Krieg, T. Cloning and complete amino acid sequence of human and murine basement membrane protein BM-40 (SPARC, osteonectin). FEBS Lett. 236, 352–356 (1988).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hohenester, E., Maurer, P., Hohenadl, C. et al. Structure of a novel extracellular Ca2+-binding module in BM-40. Nat Struct Mol Biol 3, 67–73 (1996). https://doi.org/10.1038/nsb0196-67

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0196-67

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing