Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stabilization of proteins by glycosylation examined by NMR analysis of a fucosylated proteinase inhibitor

An Erratum to this article was published on 01 March 1996

Abstract

Here we investigate the effects of the naturally occuring threonine-linked L-fucose moiety on the structure, dynamics and stability of the proteinase inhibitor PMP-C (Pars intercerebralis major peptide C). The three-dimensional structure of PMP-C fucosylated on Thr 9 has been determined by NMR spectroscopy and simulated annealing. The f ucose ring is very well ordered, held in place by hydrophobic and hydrogen bond interactions with Thr 16 and Arg 18. Comparing the NMR data and the structure of the fucosylated inhibitor with those of the nonf ucosylated form shows that conformational changes only occur in the vicinity of the fucose moiety. Nevertheless, a comparative analysis of the exchange rates of amide protons indicates that fucosylation is responsible for an overall decrease of the dynamic fluctuations of the molecule. This correlates well with an increase in stability of 1 kcal mol−1 as monitored by thermal denaturation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rademacher, T.W., Parekh, R.B. & Dwek, R.A. Glycobiology A. Rev. Biochem. 57, 785–838 (1988).

    CAS  Google Scholar 

  2. Just, I. et al. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375, 500–503 (1995).

    CAS  PubMed  Google Scholar 

  3. Kassenbrock, C.K., Garcia, P.D., Walter, P. & Kelly, R.B. Heavy-chain binding protein recognizes aberrant polypeptides translocated in vitro. Nature 333, 90–93 (1988).

    CAS  PubMed  Google Scholar 

  4. Recny, M.A. et al. N-glycosylation is required for CD2 immunoadhesion functions. J. biol. Chem. 267, 22428–22434 (1992).

    CAS  PubMed  Google Scholar 

  5. Imperiali, B. & Rickert, K.W. Conformational implications of asparagine-linked glycosylation. Proc. natn. Acad. Sci. U.S.A 92, 97–101 (1995).

    CAS  Google Scholar 

  6. Deisenhofer, J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-Å resolution. Biochemistry 20, 2361–2370 (1981).

    CAS  PubMed  Google Scholar 

  7. Bode, W., Meyer Jr., E. & Powers, J.C. Human leukocyte and porcine pancreatic elastase: X-ray crystal structures, mechanism, substrate specificity, and mechanism-based inhibitors. Biochemistry 28, 1951–1963 (1989).

    CAS  PubMed  Google Scholar 

  8. Shaanan, B., Lis, H. & Sharon, N. Structure of a legume lectin with an ordered N-linked carbohydrate in complex with lactose. Science 254, 862–866 (1991).

    CAS  PubMed  Google Scholar 

  9. Wyss, D.F., Choi, J.S. & Wagner, G. Composition and sequence specific resonance assignment of the heterogeneous N-linked glycan in the 13.6 kDa adhesion domain of human CD2 as determined by NMR on the intact glycoprotein. Biochemistry 34, 1622–1634 (1995).

    CAS  PubMed  Google Scholar 

  10. Wyss, D.F. et al. Conformation and function of the N–linked glycan in the adhesion domain of Human CD2. Science 269, 1273–1278 (1995).

    CAS  PubMed  Google Scholar 

  11. Kessler, H., Matter, H., Gemmecker, G., Kottenhahn, M. & Bats, J.W. Structure and dynamics of an O-glycosylated cyclopeptide. J. Am. Chem. Soc. 114, 4805–4817 (1992).

    CAS  Google Scholar 

  12. Gerken, T.A., Butenhof, K.J. & Shogren, R. Effects of glycosylation on the conformation and dynamics of O-linked glycoproteins: carbon-13 NMR studies of Ovine submaxillary mucin. Biochemistry 28, 5536–5543 (1989).

    CAS  PubMed  Google Scholar 

  13. Wormald, M.R. et al. The conformational effects of N-glycosylation on the tailpiece from serum IgM. Eur. J. Biochem. 198, 131–139 (1991).

    CAS  PubMed  Google Scholar 

  14. Andreotti, A.H. & Kahne, D. Effects of glycosylation on peptide backbone conformation. J. Am. Chem. Soc. 115, 3352–3353 (1993).

    CAS  Google Scholar 

  15. Davis, J.T., Hirani, S., Bartlett, C. & Reid, B.R. 1H NMR studies on an Asn–linked glycopeptide. J. biol. Chem. 269, 3331–3338 (1994).

    CAS  PubMed  Google Scholar 

  16. Joao, H.C., Scragg, I.G. & Dwek, R. Effects of glycosylation on protein conformation and amide proton exchange rates in RNase B. FEBS Lett. 307, 343–346 (1992).

    CAS  PubMed  Google Scholar 

  17. Rudd, P.M. et al. Glycoforms modify the dynamics stability and functional activity of an enzyme. Biochemistry 33, 17–22 (1994).

    CAS  PubMed  Google Scholar 

  18. Puett, D. Conformational studies on a glycosylated bovine pancreatic ribonuclease. J. biol. Chem. 248, 3566–3572 (1994).

    Google Scholar 

  19. Joao, H.C. & Dwek, R.A. Effects of glycosylation on protein structure and dynamics in ribonuclease B and some of its glycoforms. Eur. J. Biochem. 218, 239–244 (1993).

    CAS  PubMed  Google Scholar 

  20. Woods, R.J., Edge, C.J. & Dwek, R.A. Protein surface oligosaccharides and protein function. Nature struct. Biol. 1, 499–501 (1994).

    CAS  PubMed  Google Scholar 

  21. Nakakura, N., Hietter, H., van Dorsselaer, A. & Luu, B. Isolation and structural determination of three peptides from the insect Locusta migratoria. Eur. J. Biochem. 204, 147–153 (1992).

    CAS  PubMed  Google Scholar 

  22. Kellenberger, C. et al. Serine protease inhibition by insect peptides containing a cysteine knot and a triple-stranded β-sheet. J. biol. Chem. 270, 25514–25519 (1995).

    CAS  PubMed  Google Scholar 

  23. Wüthrich, K. NMR of protein and nucleic acids. (Wiley, New York, 1986).

  24. Brünger, A.T. X-PLOR manual. A system for crystallography and NMR. (1992).

  25. Richardson, J. The anatomy and taxonomy of protein structure. Adv. Protein. Chem. 34, 167–339 (1981).

    CAS  PubMed  Google Scholar 

  26. Papain, I., Schechter, I. & Berger, A. On the size of the active site in proteases. Biochem. Biophys. Res. Commun. 27, 157–162 (1967).

    Google Scholar 

  27. Hyberts, S.W., Goldberg, M.S., Havel, T.F. & Wagner, G. The solution structure of eglin c based on measurements of many NOEs and coupling constants and its comparison with X-ray structures. Prot. Sci. 1, 736–751 (1992).

    CAS  Google Scholar 

  28. Bode, W. & Huber, R. Natural protein proteinase inhibitors and their interaction with proteinases. Eur. J. Biochem. 204, 433–451 (1992).

    CAS  PubMed  Google Scholar 

  29. Dijkstra, B.W., Vliegenthart, J.F.G., Strecker, G. & Montreuil, J. Natural-abundance 13C-NMR spectroscopy of two glyco-asparagines derived from the core of N-glycosidic carbohydrate chains. Eur. J. Biochem. 130, 111–115 (1983).

    CAS  PubMed  Google Scholar 

  30. Lemieux, R.U. & Koto, S. The conformational properties of glycosidic linkages. Tetrahedron 30, 1933–1944 (1974).

    CAS  Google Scholar 

  31. Kirby, A.J. The anomeric effect and related stereoelectronic effects at oxygen. (Springer, Berlin, 1983).

  32. Linderstrøm-Lang, K. Deuterium exchange between peptides and water. Chem. Soc. London Spec. Publ. 2, 1–20 (1995).

    Google Scholar 

  33. Hvidt, A. & Nielsen, S.O. Hydrogen exchange in proteins. Adv. prot. Chem. 21, 287–386 (1966).

    CAS  Google Scholar 

  34. Loh, S.N., Prehoda, K.E., Wang, J. & Markley, J.L Hydrogen exchange in unligated and ligated staphylococcal nuclease. Biochemistry 32, 11022–11028 (1993).

    CAS  PubMed  Google Scholar 

  35. Roumestand, C. et al. Proton NMR studies of the structural and dynamical effect of chemical modification of a single aromatic side-chain in a snake cardiotoxin. Relation to the structure of the putative binding site and the cytolytic activity of the toxin. J. molec. Biol. 243, 719–735 (1994).

    CAS  PubMed  Google Scholar 

  36. Wagner, G. & Wüthrich, K. Correlation between the amide proton exchange rates and the denaturation temperatures in globular proteins related to the basic pancreatic trypsin inhibitor. J. molec. Biol. 130, 31–37 (1979).

    CAS  PubMed  Google Scholar 

  37. Delepierre, M., Dobson, C.M., Selvarajah, S., Wedin, R.E. & Poulsen, F.M. Correlation of hydrogen exchange behaviour and thermal stability of lysozyme. J. molec. Biol. 168, 687–692 (1993).

    Google Scholar 

  38. Bundi, A. & Wüthrich, K. 1H-NMR parameters of the common amino acid residues measured in aqueous solutions of the linear tetrapeptides H-Gly-Gly-X-L-Ala-OH. Biopolymers 18, 285–297 (1979).

    CAS  Google Scholar 

  39. Mer, G. et al. Solution structure of PMP–D2, a 35–residue peptide isolated from the insect Locusta migratoria. Biochemistry 33, 15397–15407 (1994).

    CAS  PubMed  Google Scholar 

  40. Hietter, H., Schultz, M. & Kunz, H. Solid-phase synthesis of a 36 amino acid fucopeptide with the uncommon Thr-Fuc linkage. Syn. Letter in the press.

  41. D. & Wüthrich, K. Application of phase sensitive two–dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem. Biophys. Res. Commun. 113, 967–974 (1993).

    Google Scholar 

  42. Bax, A. & Davis, D.G. MLEV-17-based two–dimensional homonuclear magnetization transfer spectroscopy. J. magn. Reson. 61, 306–320 (1995).

    Google Scholar 

  43. Ranee, M. et al. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem. Biophys. Res. Commun. 117, 479–485 (1983).

    Google Scholar 

  44. Jeener, J., Meier, B.H., Bachmann, P. & Ernst, R.R. Investigation of exchange processes by two-dimensional NMR spectroscopy. J. chem. Phys. 71, 4546–4553 (1979).

    CAS  Google Scholar 

  45. Anil-Kumar, Wagner, G. & Ernst, R.R. & Wüthrich, K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem. Biophys. Res. Commun. 95, 1–6 (1980).

    Google Scholar 

  46. Piotto, M., Saudek, V. & Sklenar, V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. biomolec. NMR 2, 661–665 (1992).

    CAS  Google Scholar 

  47. Bodenhausen, G. & Ruben, D.J. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Letters 69, 185–189 (1980).

    CAS  Google Scholar 

  48. Karplus, M. Contact electron-spin interactions of nuclear magnetic moments. J. chem. Phys. 30, 11–15 (1959).

    CAS  Google Scholar 

  49. Bystrov, V.F. Spin-spin coupling and the conformational states of peptide systems. Prog. nucl. magn. Reson. Spectrosc. 10, 41–82 (1976).

    Google Scholar 

  50. Pardi, A., Billeter, M. & Wüthrich, K. Calibration of the angular dependence of the amide proton-C alpha proton coupling constants, 3JHN alpha, in a globular protein. Use of 3JHN alpha for identification of helical secondary structure. J. molec. Biol. 180, 741–751 (1984).

    CAS  PubMed  Google Scholar 

  51. Cai, M., Liu, J., Gong, Y. & Krishnamoorthi, R. A practical method for stereospecific assignments of γ- and δmethylene hydrogens via estimation of vicinal 1H-1H coupling constants. J. magn. Reson. 107, 172–178 (1995).

    CAS  Google Scholar 

  52. Cai, M. & Krishnamoorthi, R. Identification of hydrogen-bonded lysine and arginine residues in a protein by means of χ4-torsional-angle determination. J. magn. Reson. 106, 297–299 (1995).

    CAS  Google Scholar 

  53. Montelione, G.T. et al. initiation structures in ribonuclease A: conformational analysis of trans-Ac-Asn-Pro-Tyr-NHMe and trans-Ac-Tyr-Pro-Asn-NHMe in water and in the solid state. J. Am. Chem. Soc. 106, 7946–7958 (1984).

    Google Scholar 

  54. Klaus, W., Broger, C., Gerber, P. & Senn, H. Determination of the disulphide bonding pattern in proteins by local and global analysis of nuclear magnetic resonance data. J. molec. Biol. 232, 897–906 (1993).

    CAS  PubMed  Google Scholar 

  55. Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy. Crit. Rev. Bioch. molec. Biol. 24, 479–564 (1989).

    CAS  Google Scholar 

  56. Brooks, B.R. et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. comput. Chem. 4, 187–217 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mer, G., Hietter, H. & Lefèvre, JF. Stabilization of proteins by glycosylation examined by NMR analysis of a fucosylated proteinase inhibitor. Nat Struct Mol Biol 3, 45–53 (1996). https://doi.org/10.1038/nsb0196-45

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0196-45

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing