Ionic interactions and the global conformations of the hammerhead ribozyme

Abstract

Here we investigate the global conformation of the hammerhead ribozyme. Electrophoretic studies demonstrate that the structure is folded in response to the concentration and type of ions present. Folding based on colinear alignment of arms II and III is suggested, with a variable angle subtended by the remaining helix I. In the probable active conformation, a small angle is subtended between helices I and II. Using uranyl photocleavage, an ion binding site has been detected in the long single-stranded region. The folded conformation could generate a pre-activation of the scissile bond to permit in-line attack of the 2′- hydroxyl group, with a bound metal ion playing an integral role in the chemistry.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Gesteland, R.F. & Atkins, J.F. The RNA world. (Cold Spring Harbor Press, New York, 1993).

  2. 2

    Forster, A.C. & Symons, R.H. Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell 49, 211–220 (1987).

  3. 3

    Hazeloff, J.P. & Gerlach, W.L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334, 585–591 (1988).

  4. 4

    Epstein, L.M. & Gall, J.G. Self-cleaving transcripts of satellite DNA from the newt. Cell 48, 535–543 (1987).

  5. 5

    Feldstein, P.A., Buzayan, J.M. & Bruening, G. Two sequences participating in the autolytic processing of satellite tobacco ringspot virus complementary RNA. Gene 82, 53–61 (1989).

  6. 6

    Hampel, A. & Tritz, R. RNA catalytic properties of the minimum (−)sTRSV sequence. Biochemistry 28, 4929–4933 (1989).

  7. 7

    Sharmeen, L., Kuo, M.Y., Dinter-Gottlieb, G. & Taylor, J. Antigenomic RNA of human hepatitis delta virus can undergo self-cleavage. J. Virol. 62, 2674–2679 (1988).

  8. 8

    Dahm, S.C. & Uhlenbeck, O.C. Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry 30, 9464–9469 (1991).

  9. 9

    Uhlenbeck, U.C. A small catalytic oligoribonucleotide. Nature 328, 596–600 (1987).

  10. 10

    Fedor, M.J. & Uhlenbeck, O.C. Substrate sequence effects on “hammerhead” RNA catalytic efficiency. Proc. natn. Acad. Sci. U.S.A. 87, 1668–1672 (1990).

  11. 11

    Fedor, M.J. & Uhlenbeck, O.C. Kinetics of intermolecular cleavage by hammerhead ribozymes. Biochemistry 31, 12042–12054 (1992).

  12. 12

    Hertel, K.J., Herschlag, D. & Uhlenbeck, O.C. A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry 33, 3374–3385 (1994).

  13. 13

    Hutchins, C.J., Rathjen, P.D., Forster, A.C. & Symons, R.H. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res. 14, 3627–3640 (1986).

  14. 14

    Ruffner, D.E., Stormo, G.D. & Uhlenbeck, O.C. Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry 29, 10695–10702 (1990).

  15. 15

    Olsen, D.B., Benseler, F., Aurup, H., Pieken, W.A. & Eckstein, F. Study of a hammerhead ribozyme containing 2′-modified adenosine residues. Biochemistry 30, 9735–9741 (1991).

  16. 16

    Williams, D.M., Pieken, W.A. & Eckstein, F. Function of specific 2′-hydroxyl groups of guanosines in a hammerhead ribozyme probed by 2′-modifications. Proc. natn. Acad. Sci. U.S.A. 89, 918–921 (1992).

  17. 17

    Fu, D.-J. & McLaughlin, L.W. Importance of specific purine amino and hydroxyl groups for efficient cleavage by a hammerhead ribozyme. Proc. natn. Acad. Sci. U.S.A. 89, 3985–3989 (1992).

  18. 18

    Fu, D.-J. & McLaughlin, L.W. Importance of specific adenosine N7-nitrogens for efficient cleavage by a hammerhead ribozyme. A model for magnesium binding. Biochemistry 31, 10941–10949 (1992).

  19. 19

    Paolella, G., Sproat, B.S. & Lamond, A.I. Nuclease resistant ribozymes with high catalytic activity. EMBO J. 11, 1913–1919 (1992).

  20. 20

    Yang, J.-H., Usman, N., Chartrand, P. & Cedergren, R. Minimum ribonucleotide requirement for catalysis by the RNA hammerhead domain. Biochemistry 31, 5005–5009 (1992).

  21. 21

    Fu, D.J., Rajur, S.B. & McLaughlin, L.W. Importance of specific guanosine N7-nitrogens and purine amino groups for efficient cleavage by a hammerhead ribozyme. Biochemistry 32, 10629–10637 (1993).

  22. 22

    Tuschl, T., Ng, M.M.P., Pieken, W., Benseler, F. & Eckstein, F. Importance of exocyclic base functional groups of central core guanosines for hammerhead ribozyme activity. Biochemistry 32, 11658–11668 (1993).

  23. 23

    Seela, F., Mersmann, K., Grasby, J.A. & Gait, M.J. 7-Deazaadenosine - oligoribonucleotide building block synthesis and autocatalytic hydrolysis of base-modified hammerhead ribozymes. Helv. chim. Acta 76, 1809–1820 (1993).

  24. 24

    Grasby, J.A., Butler, P.J.G. & Gait, M.J. The synthesis of oligoribonucleotides containing O6-methylguanosine - the role of conserved guanosine residues in hammerhead ribozyme cleavage. Nucleic Acids Res. 21, 4444–4450 (1993).

  25. 25

    Koizumi, M. & Ohtsuka, E. Effects of phosphorothioate and 2′-amino groups in hammerhead ribozymes on cleavage rates and Mg2+ binding. Biochemistry 30, 5145–5150 (1991).

  26. 26

    Slim, G. & Gait, M.J. Configurationally defined phosphorothioate-containing oligoribonucleotides in the study of the mechanism of cleavage of hammerhead ribozymes. Nucleic Acids Res. 19, 1183–1188 (1991).

  27. 27

    Dahm, S.C., Derrick, W.B. & Uhlenbeck, O.C. Evidence for the role of solvated metal hydroxide in the hammerhead cleavage mechanism. Biochemistry 32, 13040–13045 (1993).

  28. 28

    Gough, G.W. & Lilley, D.M.J. DNA bending induced by cruciform formation. Nature 313, 154–156 (1985).

  29. 29

    Cooper, J.P. & Hagerman, P.J. Gel electrophoretic analysis of the geometry of a DNA four-way junction. J. molec. Biol. 198, 711–719 (1987).

  30. 30

    Duckett, D.R. et al. The structure of the Holliday junction and its resolution. Cell 55, 79–89 (1988).

  31. 31

    Duckett, D.R. & Lilley, D.M.J. The three-way DNA junction is a Y-shaped molecule in which there is no helix-helix stacking. EMBO J. 9, 1659–1664 (1990).

  32. 32

    Duckett, D.R. & Lilley, D.M.J. Effects of base mismatches on the structure of the four-way DNA junction. J. molec. Biol. 221, 147–161 (1991).

  33. 33

    Welch, J.B., Duckett, D.R. & Lilley, D.M.J. Structures of bulged three-way DNA junctions. Nucleic Acids Res. 21, 4548–4555 (1993).

  34. 34

    Møllegaard, N.E., Murchie, A.I.H., Lilley, D.M.J. & Nielsen, P.E. Uranyl photoprobing of a four-way DNA junction: Evidence for specific metal ion binding. EMBO J. 13, 1508–1513 (1994).

  35. 35

    Bhattacharyya, A., Murchie, A.I.H. & Lilley, D.M.J. RNA bulges and the helical periodicity of double-stranded RNA. Nature 343, 484–487 (1990).

  36. 36

    Gessner, R.V. et al. Structural basis for stabilisation of Z-DNA by cobalt hexammine and magnesium cations. Biochemistry 24, 237–240 (1985).

  37. 37

    Duckett, D.R., Murchie, A.I.H. & Lilley, D.M.J. The role of metal ions in the conformation of the four-way junction. EMBO J. 9, 583–590 (1990).

  38. 38

    Heus, H.A. & Pardi, A. Nuclear magnetic resonance studies of the hammerhead ribozyme domain. J. molec. Biol. 217, 113–124 (1991).

  39. 39

    Gast, F.U., Amiri, K.M.A. & Hagerman, P.J. Interhelix geometry of stems I and II of a self-cleaving hammerhead RNA. Biochemistry 33, 1788–1796 (1994).

  40. 40

    Shirley, N.J. & Symons, R.H. Probing the hammerhead ribozyme structure with ribonucleases. Nucleic Acids Res. 22, 1620–1625 (1994).

  41. 41

    Woisard, A., Fourrey, J.L. & Favre, A. Multiple folded conformations of a hammerhead ribozyme domain under cleavage conditions. J. molec. Biol. 239, 366–370 (1994).

  42. 42

    Moras, D., Comarmond, M.B., Fischer, J., Weiss, R., Thierry, J.C., Ebel, J.P. & Giegé, R. Crystal structure of yeast tRNAAsp. Nature 288, 669–674 (1980).

  43. 43

    Woo, N.H., Roe, B.A. & Rich, A. Three-dimensional structure of E. coli initiator tRNAfMet. Nature 286, 346–351 (1980).

  44. 44

    Tuschl, T. & Eckstein, F. Hammerhead ribozymes - importance of stem-loop-ll for activity. Proc. natl. Acad. Sci. U.S.A. 90, 6991–6994 (1993).

  45. 45

    Ruffner, D.E. & Uhlenbeck, O.C. Thiophosphate interference experiments locate phosphates important for the hammerhead RNA self-cleavage reaction. Nucleic Acids Res. 18, 6025–6029 (1990).

  46. 46

    Woisard, A., Favre, A., Clivio, P. & Fourrey, J.-L. Hammerhead ribozyme tertiary folding: intrinsic photolabeling studies. J. Amer. chem. Soc. 114, 10072–10074 (1992).

  47. 47

    Quigley, G.J., Teeter, M.M. & Rich, A. Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA. Proc. natn. Acad. Sci. U.S.A. 75, 64–68 (1978).

  48. 48

    Beaucage, S.L. & Caruthers, M.H. Deoxynucleoside phosphoramidites - a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron lett. 22, 1859–1862 (1981).

  49. 49

    Sinha, N.D., Biernat, J., McManus, J. & Koster, H. Polymer support oligonucleotide synthesis XVIII: Use of b-cyanoethyl-N,N-dialkylamino/ N-morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product. Nucleic Acids Res. 12, 4539–4557 (1984).

  50. 50

    Perreault, J.-P., Wu, T., Cousineau, B., Ogilvie, K.K. & Cedergren, R. Mixed deoxyribo- and ribooligonucleotides with catalytic activity. Nature 344, 565–567 (1990).

  51. 51

    Hakimelahi, G.H., Proba, Z.A. & Ogilvie, K.K. Tetrahedron let. 22, 5243–5246 (1981).

  52. 52

    Maxam, A.M. & Gilbert, W. Sequencing end-labelled DNA with base-specific chemical cleavages. Meth. Enzymol. 65, 499–560 (1980).

  53. 53

    Hertel, K.J. et al. Numbering system for the hammerhead. Nucleic Acids Res. 20, 3252 (1992).

  54. 54

    Pley, H.W., Flaherty, K.M. & Mckay, D.B. Three-dimensional structure of a hammerhead ribozyme. Nature 372, 68–74 (1994).

  55. 55

    Tuschl, I., Gohlke, C., Jovin, T.M., Westhof, E. & Eckstein, F. A three-dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science 266, 785–789 (1994).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bassi, G., Møllegaard, N., Murchie, A. et al. Ionic interactions and the global conformations of the hammerhead ribozyme. Nat Struct Mol Biol 2, 45–55 (1995) doi:10.1038/nsb0195-45

Download citation

Further reading