Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The intact and cleaved human antithrombin III complex as a model for serpin–proteinase interactions


Antithrombin is a member of the serine proteinase inhibitor (serpin) family which contain a flexible reactive site loop that interacts with, and is cleaved by the target proteinase. In cleaved and latent serpins, the reactive site loop is inserted into a large central β–sheet in the same molecule, whereas in ovalbumin, a nonfunctional serpin, the reactive site loop is completely exposed and in an α–helical conformation. However, in neither conformation can the reactive site loop bind to target proteinases. Here we report the structure of an intact and cleaved human antithrombin complex. The intact reactive site loop is in a novel conformation that seems well suited for interaction with proteinases such as thrombin and blood coagulation factor Xa.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Olson, S.T., & Björk, I. in Thrombin, structure and function (ed. Berliner, L. J.) 159–217 (Plenum, New York, 1992).

    Google Scholar 

  2. Downing, M.R., Bloom, J.W., & Mann, K.G. Comparison of the inhibition of thrombin by three plasma protease inhibitors. Biochemistry 17, 2649–2653 (1978).

    Article  CAS  Google Scholar 

  3. Carrell, R.W., Evans, D.L.I. & Stein, P.E. Mobile reactive centre of serpins and the control of thrombosis. Nature 353, 576–578 (1991).

    Article  CAS  Google Scholar 

  4. Hubbard, S.J., Campbell, S.F., & Thornton, J.M. Molecular recognition. Conformational analysis of limited proteolytic sites and serins proteinase inhibitors. J. molec. Biol. 220, 507–530 (1991).

    Article  CAS  Google Scholar 

  5. Loebermann, H., Tokuoka, R., Deisenhofer, J. & Huber, R. Human α1-Proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. J. molec. Biol. 177, 531–556 (1984).

    Article  CAS  Google Scholar 

  6. Mourey, L., et al. Antithrombin III: structural and functional aspects. Biochimie 72, 599–608 (1990).

    Article  CAS  Google Scholar 

  7. Baumann, U., et al. Crystal structure of cleaved human α1-antichymotrypsin at 2.7 Å resolution and its comparison with other serpins. J. molec. Biol. 218, 595–606 (1991).

    Article  CAS  Google Scholar 

  8. Mottonen, J., et al. Structural basis of latency in plasminogen activator inhibitor-1. Nature 355, 270–273 (1992).

    Article  CAS  Google Scholar 

  9. Stein, P.E., et al. Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature 347, 99–102 (1990).

    Article  CAS  Google Scholar 

  10. Jordan, R.E., Oosta, G.M., Gardner, W.T. & Rosenberg, R.D. The kinetics of hemostatic enzyme-antithrombin interactions in the presence of low molecular weight heparin J. biol. Chem. 255, 10081–10090 (1980).

    CAS  PubMed  Google Scholar 

  11. Schreuder, H., et al. Crystallization and preliminary X-ray analysis of human antithrombin III. J. molec. Biol. 229, 249–250 (1993).

    Article  CAS  Google Scholar 

  12. Schechter, I., & Berger, A. On the size of the active site in proteases. I. Papain. Biochem. biophys. Res. Commun. 27, 157–162 (1967).

    Google Scholar 

  13. Carrell, R.W., & Evans, D.L.I. Serpins: mobile conformations in a family of proteinase inhibitors. Curr. opin. Struct. Biol. 2, 438–446 (1992).

    Article  CAS  Google Scholar 

  14. Tsunogae, Y. et al. Structure of the trypsin-binding domain of Bowman-Birk type protease inhibitor and its interaction with trypsin. J. Biochem. 100, 1637–1646 (1986).

    Article  CAS  Google Scholar 

  15. Bode, W., Papamokos, E., Musil, D., Seemueller, U., & Fritz, H. Refined 1.2 Å crystal structure of the complex formed between subtilisin Carlsberg and the inhibitor eglin c. Molecular structure of eglin and its detailed interaction with subtilisin. EMBO J. 5, 813–818 (1986).

    Article  CAS  Google Scholar 

  16. Gros, P., Betzel, Ch., Dauter, Z., Wilson, K.S., & Hol, W.G.J. Molecular dynamics refinement of a thermitase-eglin-c complex at 1.98 Å resolution and comparison of two crystal forms that differ in calcium content. J. molec. Biol. 210, 347–367 (1989).

    Article  CAS  Google Scholar 

  17. Engh, R.A., Wright, H.T. & Huber, R. Modeling of the intact form of the α1-proteinase inhibitor. Protein Eng. 3, 469–477 (1990).

    Article  CAS  Google Scholar 

  18. Bode, W., & Huber, R. Ligand binding: proteinase-protein inhibitor interactions. Curr. opin. Struct. Biol. 1, 45–52 (1991).

    Article  CAS  Google Scholar 

  19. Mast, A.E., Enghild, J.J., & Salvesen, G. Conformation of the reactive site loop of α1-proteinase inhibitor probed by limited proteolysis. Biochemistry 31, 2720–2728 (1992).

    Article  CAS  Google Scholar 

  20. Preissner, K.T. Self association of antithrombin III relates to multimer formation of thrombin-antithrombin complexes. Thromb. Haemostasis 69, 422–429 (1993).

    Article  CAS  Google Scholar 

  21. Stein, P.E., Leslie, A.G.W., Finch, J.T., & Carrell, R.W. Crystal structure of uncleaved ovalbumin at 1.95 Å resolution. J. molec. Biol. 221, 941–959 (1991).

    Article  CAS  Google Scholar 

  22. Bernstein, F.C. et al. The protein data bank: a computer-based archival file for macromolecular structures. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  23. Schreuder, H.A., et al. in Molecular Replacement, Proceedings of the CCP4 Study Weekend, 31 January - 1 February, 1992 (eds. Dodson, E. J, Gover, S and Wolf, W.) 106–115 (SERC Daresbury Laboratory, Warrington WA4 4AD, England, 1992).

    Google Scholar 

  24. Brünger, A.T. Solution of a Fab (26-10)/digitoxin complex by generalized molecular replacement. Acta Crystallogr. A47, 195–204 (1991).

    Article  Google Scholar 

  25. Jones, T.A. Interactive computer graphics: FRODO. Meth. Enzym. 115, 157–171 (1985).

    Article  CAS  Google Scholar 

  26. Jones, T.A. & Kjeldgaard, M. O version 5.8.1 (Dept. Molec. Biol., Univ. Uppsala, Sweden, 1992).

  27. Mourey, L. et al. Crystal structure of cleaved bovine antithrombin III at 3.2 Å resolution. J. molec. Biol. 232, 223–241 (1993).

    Article  CAS  Google Scholar 

  28. Bode, W. et al. The refined 1.9 Å crystal structure of human α-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 8, 3467–3475 (1989).

    Article  CAS  Google Scholar 

  29. Grootenhuis, P.D.J., & Boeckel, C.A.A. Constructing a molecular model of the interaction between antithrombin III and a potent heparin analogue. J. Am. chem. Soc. 113, 2743–2747 (1991).

    Article  CAS  Google Scholar 

  30. Bode, W., Turk, D., & Karshikov, A. The refined 1.9-Å crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human α-thrombin: Structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Prot. Sci. 1, 426–471 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schreuder, H., de Boer, B., Dijkema, R. et al. The intact and cleaved human antithrombin III complex as a model for serpin–proteinase interactions. Nat Struct Mol Biol 1, 48–54 (1994).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing