Article | Published:

An unusual buried polar cluster in a family of fungal lipases

Nature Structural & Molecular Biologyvolume 1pages3647 (1994) | Download Citation



The stability of globular proteins arises largely from the burial of non–polar amino acids in their interior. These residues are efficiently packed to eliminate energetically unfavorable cavities. Contrary to these observations, high resolution X–ray crystallographic analyses of four homologous lipases from filamentous fungi reveal an α/β fold which contains a buried conserved constellation of charged and polar side chains with associated cavities containing ordered water molecules. It is possible that this structural arrangement plays an important role in interfacial catalysis.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Sarda, L. & Desnuelle, P. Action de la lipase pancreatique sur les esters en emulsion. Biochim. biophys. Acta. 30, 513–521 (1958).

  2. 2

    Brady, L. et al. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343, 767–770 (1990).

  3. 3

    Derewenda, Z.S., Derewenda, U. & Dodson, G.G. The crystal and molecular structure of the Rhizomucor miehei triacylglycerol lipase at 1.9Å resolution. J. Molec. Biol. 227, 818–839 (1992).

  4. 4

    Schrag, J.D., Li, Y., Wu, S. & Cygler, M. Ser-His-Glu forms the catalytic site of a lipase from Geotrichum candidum. Nature 351, 761–764 (1991).

  5. 5

    Schrag, J.D. & Cygler, M. 1.8Å refined structure of the lipase from Geotrichum candidum. J. Molec. Biol. 230, 575–591 (1993).

  6. 6

    Grochulski, P. et al. Insights into interfacial activation from an open structure of Candida rugosa lipase. J. biol. Chem. 268, 12843–12847 (1993).

  7. 7

    Winkler, F.K., D'Arcy, A. & Hunziker, W. Structure of human pancreatic lipase. Nature 343, 771–774 (1990).

  8. 8

    Noble, M.E.M., Cleasby, A., Johnson, L.N., Egmond, M.R. & Frenken, L.G.J. The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate. FEBS Lett. 331, 123–128 (1993).

  9. 9

    Derewenda, Z.S. & Derewenda, U. Relationships among serine hydrolases: evidence of a common structural motif in triacylglycerol lipases and esterases. Biochem. Cell Biol. 69, 842–851 (1991).

  10. 10

    Desnuelle, P., Sarda, L. & Aihaud, G. Inhibition de la lipase pancreatique par le diethyl-p-nitrophenyl phosphate en emulsion. Biochim. biophys. Acta 37, 570–571 (1960).

  11. 11

    Brzozowski, A.M. et al. A model for interfacial activation in lipases from the structure of a lipase-inhibitor complex. Nature 351, 491–494 (1991).

  12. 12

    Derewenda, U., Brzozowski, A.M., Lawson, D.M. & Derewenda, Z.S. Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. Biochemistry 31, 1532–1541 (1992).

  13. 13

    van Tilbeurgh, H. et al. Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature 362, 814–820 (1993).

  14. 14

    Boel, E. et al. in Lipases, Structure, Mechanism and Genetic Engineering Vol. 16 (eds Alberghina, L., Schmid, R.D. & Verger, R.) 207–219 (GBF Monographs 1991).

  15. 15

    Yamaguchi, S., Mase, T. & Tekeuchi, K. Cloning and structure of the mono- and diglyceride lipase - encoding gene. Gene 103, 61–67 (1991).

  16. 16

    Haas, M.J., Allen, J. & Berka, T.R. Cloning, expression and characterization of cDNA encoding a lipase from Rhizopus delemar. Gene 109, 107–113 (1991).

  17. 17

    Derewenda, U. et al. Confromational lability of lipases observed in the absence of an oil-water interface. J. Lipid. Res. in press (1994).

  18. 18

    Ollis, D.I. et al. The α/β hydrolase fold. Protein Engineering 5, 197–211 (1992).

  19. 19

    Branden, C.-I. The TIM barrel -the most frequently occuring folding motif in proteins. Curr. Opin. struct. Biol. 1, 378–383 (1992).

  20. 20

    Rashe, A.A. & Honig, B.H. On the environment of ionizable groups in globular proteins. J. molec. Biol. 173, 515–521 (1984).

  21. 21

    Barlow, D.J. & Thornton, J.M. Ion pairs in proteins. J. molec. Biol. 168, 867–885 (1983).

  22. 22

    Åberg, A., Nordlund, P. & Eklund, H. Unusual clustering of carboxyl side chains in the core of the iron-free ribonucleotide reductase. Nature 361, 276–278 (1993).

  23. 23

    Brockman, H.L., Law, J.H. & Keady, F.J. Catalysis by adsorbed enzymes. The hydrolysis of tripropionin by pancreatic lipase adsorbed to siliconized glass beads. J. biol. Chem. 248, 4965–4970 (1973).

  24. 24

    Brockerhoff, H. Substrate specificity of pancreatic lipase. Biochim. biophys. Acta 159, 296–303 (1968).

  25. 25

    Verger, R. in Lipases (eds Borgstrom, B. & Brockman, H.L.) 83–150 (Elsevier Science Publishers B.V. Amsterdam, 1984).

  26. 26

    Muderhwa, J.M. & Brockman, J.H. Lateral lipid distribution is a major regulator of lipase activity. Implications for lipid mediated signal transduction. J. biol. Chem. 267, 24184–24192 (1992).

  27. 27

    Wilcox, R.W. et al. Regulation of rat hepatic lipase by the composition of monomolecular films of lipid. Biochemistry 32, 5752–5758 (1993).

  28. 28

    Honig, B.H. & Hubbell, W.L. Stability of “salt bridges” in membrane proteins. Proc. natn. Acad. Sci. U.S.A. 81, 5412–5416 (1984).

  29. 29

    Swenson, L. et al. Crystallization and preliminary crystallographic studies of the precursor and mature forms of a neutral lipase from the fungus Rhizopus delemar. Proteins Struct. Funct. Genet. (in the press).

  30. 30

    Howard, A.J. et al. Use of an imaging proportional counter in macromolecular crystallography. J. appl. Crystallogr. 20, 383–387 (1987).

  31. 31

    Brunger, A.T. X-PLOR Manual, Yale University, New Haven, CT, U.S.A. (1988).

  32. 32

    Jones, A. A graphics model building and refinement system for macromolecules. J. Appl. crystallogr. 11, 268–272 (1978).

  33. 33

    Lawson, D.M. et al. in: Lipases. Their Structure, Biochemistry and Applications. (ed Paul Wooley, Steffen B. Petersen) in press (Cambridge University Press, Cambridge, UK. 1993).

  34. 34

    Hendrickson, W.A. Stereochemically restrained refinement of macromolecular structures. Methods Enzymol. 115, 252–270 (1985).

  35. 35

    Navaza, J. AMoRe: a new package for molecular replacement. In: “Proceedings of the CCP4 study weekend” (eds. E.J. Dodson, S. Gower, W. Wolf) 87–91 (SERC, Daresbury, UK. 1992).

  36. 36

    Carson, M. Ribbon models for macromolecules. J. Mol. Graphics, 5, 103–106 (1987).

  37. 37

    Jones, T.A., Zou, J.-Y., Cowan, S.W., Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

Download references

Author information


  1. Medical Research Council of Canada Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7

    • U. Derewenda
    • , L. Swenson
    • , R. Green
    • , Y. Wei
    •  & Z.S. Derewenda
  2. Department of Chemistry, University of York, Heslington, York, Y01 5DD, U.K.

    • G.G. Dodson
  3. Tsukuba Research Laboratories, Amano Pharmaceutical Co. Ltd., 22 Miyukigaoka, Tsukuba, Ibaraki, 305, Japan

    • S. Yamaguchi
  4. US Dept. of Agriculture, Agricultural Research Service, North Atlantic Area Eastern Regional Research Center, 600 East Mermaid Lane, Philadelphia, PA, 19118, USA

    • M.J. Haas


  1. Search for U. Derewenda in:

  2. Search for L. Swenson in:

  3. Search for R. Green in:

  4. Search for Y. Wei in:

  5. Search for G.G. Dodson in:

  6. Search for S. Yamaguchi in:

  7. Search for M.J. Haas in:

  8. Search for Z.S. Derewenda in:

About this article

Publication history



Issue Date


Further reading