Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An unusual buried polar cluster in a family of fungal lipases

Abstract

The stability of globular proteins arises largely from the burial of non–polar amino acids in their interior. These residues are efficiently packed to eliminate energetically unfavorable cavities. Contrary to these observations, high resolution X–ray crystallographic analyses of four homologous lipases from filamentous fungi reveal an α/β fold which contains a buried conserved constellation of charged and polar side chains with associated cavities containing ordered water molecules. It is possible that this structural arrangement plays an important role in interfacial catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sarda, L. & Desnuelle, P. Action de la lipase pancreatique sur les esters en emulsion. Biochim. biophys. Acta. 30, 513–521 (1958).

    Article  CAS  Google Scholar 

  2. Brady, L. et al. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343, 767–770 (1990).

    Article  CAS  Google Scholar 

  3. Derewenda, Z.S., Derewenda, U. & Dodson, G.G. The crystal and molecular structure of the Rhizomucor miehei triacylglycerol lipase at 1.9Å resolution. J. Molec. Biol. 227, 818–839 (1992).

    Article  CAS  Google Scholar 

  4. Schrag, J.D., Li, Y., Wu, S. & Cygler, M. Ser-His-Glu forms the catalytic site of a lipase from Geotrichum candidum. Nature 351, 761–764 (1991).

    Article  CAS  Google Scholar 

  5. Schrag, J.D. & Cygler, M. 1.8Å refined structure of the lipase from Geotrichum candidum. J. Molec. Biol. 230, 575–591 (1993).

    Article  CAS  Google Scholar 

  6. Grochulski, P. et al. Insights into interfacial activation from an open structure of Candida rugosa lipase. J. biol. Chem. 268, 12843–12847 (1993).

    CAS  PubMed  Google Scholar 

  7. Winkler, F.K., D'Arcy, A. & Hunziker, W. Structure of human pancreatic lipase. Nature 343, 771–774 (1990).

    Article  CAS  Google Scholar 

  8. Noble, M.E.M., Cleasby, A., Johnson, L.N., Egmond, M.R. & Frenken, L.G.J. The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate. FEBS Lett. 331, 123–128 (1993).

    Article  CAS  Google Scholar 

  9. Derewenda, Z.S. & Derewenda, U. Relationships among serine hydrolases: evidence of a common structural motif in triacylglycerol lipases and esterases. Biochem. Cell Biol. 69, 842–851 (1991).

    Article  CAS  Google Scholar 

  10. Desnuelle, P., Sarda, L. & Aihaud, G. Inhibition de la lipase pancreatique par le diethyl-p-nitrophenyl phosphate en emulsion. Biochim. biophys. Acta 37, 570–571 (1960).

    Article  CAS  Google Scholar 

  11. Brzozowski, A.M. et al. A model for interfacial activation in lipases from the structure of a lipase-inhibitor complex. Nature 351, 491–494 (1991).

    Article  CAS  Google Scholar 

  12. Derewenda, U., Brzozowski, A.M., Lawson, D.M. & Derewenda, Z.S. Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. Biochemistry 31, 1532–1541 (1992).

    Article  CAS  Google Scholar 

  13. van Tilbeurgh, H. et al. Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature 362, 814–820 (1993).

    Article  CAS  Google Scholar 

  14. Boel, E. et al. in Lipases, Structure, Mechanism and Genetic Engineering Vol. 16 (eds Alberghina, L., Schmid, R.D. & Verger, R.) 207–219 (GBF Monographs 1991).

    Google Scholar 

  15. Yamaguchi, S., Mase, T. & Tekeuchi, K. Cloning and structure of the mono- and diglyceride lipase - encoding gene. Gene 103, 61–67 (1991).

    Article  CAS  Google Scholar 

  16. Haas, M.J., Allen, J. & Berka, T.R. Cloning, expression and characterization of cDNA encoding a lipase from Rhizopus delemar. Gene 109, 107–113 (1991).

    Article  CAS  Google Scholar 

  17. Derewenda, U. et al. Confromational lability of lipases observed in the absence of an oil-water interface. J. Lipid. Res. in press (1994).

    Google Scholar 

  18. Ollis, D.I. et al. The α/β hydrolase fold. Protein Engineering 5, 197–211 (1992).

    Article  CAS  Google Scholar 

  19. Branden, C.-I. The TIM barrel -the most frequently occuring folding motif in proteins. Curr. Opin. struct. Biol. 1, 378–383 (1992).

    Google Scholar 

  20. Rashe, A.A. & Honig, B.H. On the environment of ionizable groups in globular proteins. J. molec. Biol. 173, 515–521 (1984).

    Article  Google Scholar 

  21. Barlow, D.J. & Thornton, J.M. Ion pairs in proteins. J. molec. Biol. 168, 867–885 (1983).

    Article  CAS  Google Scholar 

  22. Åberg, A., Nordlund, P. & Eklund, H. Unusual clustering of carboxyl side chains in the core of the iron-free ribonucleotide reductase. Nature 361, 276–278 (1993).

    Article  Google Scholar 

  23. Brockman, H.L., Law, J.H. & Keady, F.J. Catalysis by adsorbed enzymes. The hydrolysis of tripropionin by pancreatic lipase adsorbed to siliconized glass beads. J. biol. Chem. 248, 4965–4970 (1973).

    CAS  PubMed  Google Scholar 

  24. Brockerhoff, H. Substrate specificity of pancreatic lipase. Biochim. biophys. Acta 159, 296–303 (1968).

    Article  CAS  Google Scholar 

  25. Verger, R. in Lipases (eds Borgstrom, B. & Brockman, H.L.) 83–150 (Elsevier Science Publishers B.V. Amsterdam, 1984).

    Google Scholar 

  26. Muderhwa, J.M. & Brockman, J.H. Lateral lipid distribution is a major regulator of lipase activity. Implications for lipid mediated signal transduction. J. biol. Chem. 267, 24184–24192 (1992).

    CAS  PubMed  Google Scholar 

  27. Wilcox, R.W. et al. Regulation of rat hepatic lipase by the composition of monomolecular films of lipid. Biochemistry 32, 5752–5758 (1993).

    Article  CAS  Google Scholar 

  28. Honig, B.H. & Hubbell, W.L. Stability of “salt bridges” in membrane proteins. Proc. natn. Acad. Sci. U.S.A. 81, 5412–5416 (1984).

    Article  CAS  Google Scholar 

  29. Swenson, L. et al. Crystallization and preliminary crystallographic studies of the precursor and mature forms of a neutral lipase from the fungus Rhizopus delemar. Proteins Struct. Funct. Genet. (in the press).

  30. Howard, A.J. et al. Use of an imaging proportional counter in macromolecular crystallography. J. appl. Crystallogr. 20, 383–387 (1987).

    Article  CAS  Google Scholar 

  31. Brunger, A.T. X-PLOR Manual, Yale University, New Haven, CT, U.S.A. (1988).

    Google Scholar 

  32. Jones, A. A graphics model building and refinement system for macromolecules. J. Appl. crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  33. Lawson, D.M. et al. in: Lipases. Their Structure, Biochemistry and Applications. (ed Paul Wooley, Steffen B. Petersen) in press (Cambridge University Press, Cambridge, UK. 1993).

    Google Scholar 

  34. Hendrickson, W.A. Stereochemically restrained refinement of macromolecular structures. Methods Enzymol. 115, 252–270 (1985).

    Article  CAS  Google Scholar 

  35. Navaza, J. AMoRe: a new package for molecular replacement. In: “Proceedings of the CCP4 study weekend” (eds. E.J. Dodson, S. Gower, W. Wolf) 87–91 (SERC, Daresbury, UK. 1992).

    Google Scholar 

  36. Carson, M. Ribbon models for macromolecules. J. Mol. Graphics, 5, 103–106 (1987).

    Article  CAS  Google Scholar 

  37. Jones, T.A., Zou, J.-Y., Cowan, S.W., Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derewenda, U., Swenson, L., Green, R. et al. An unusual buried polar cluster in a family of fungal lipases. Nat Struct Mol Biol 1, 36–47 (1994). https://doi.org/10.1038/nsb0194-36

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0194-36

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing