Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural characterization of a highly–ordered ‘molten globule’ at low pH


The characterization of unfolded and partly folded states of proteins is central to understanding protein stability and folding, as well as providing a basis for protein design. The four helix bundle–protein interleukin–4 undergoes an unfolding transition at low pH. Using heteronuclear nuclear magnetic resonance methods we show that following this transition the protein retains a highly ordered hydrophobic core in which most, but not all, of the secondary structure is preserved. Extensive disorder exists, however, in regions of polypeptide chain linking the structural elements which make up this core. We suggest that this ‘highly ordered molten globule’ could be indicative of the type of structures occurring late in protein folding processes, in contrast to more disordered ‘molten globules’ which relate to early folding intermediates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Kim, P.S. & Baldwin, R.L. Intermediates in the folding reactions of small proteins. A. Rev. Biochem. 59, 631–660 (1990).

    Article  CAS  Google Scholar 

  2. Creighton, T.E. Protein Folding (Freeman, New York, 1992).

    Google Scholar 

  3. Kuwajima, K. The molten globule state as a clue for understanding the folding cooperativity of globular-protein structure. Proteins 6, 87–103 (1989).

    Article  CAS  Google Scholar 

  4. Ptitsyn, O.B., Pain, R.H., Semisotnov, G.V., Zerovnik, E & Razgulgaev, O.I. Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett. 262, 20–24 (1990).

    Article  CAS  Google Scholar 

  5. Haynie, D.T. & Freire, E. Structural energetics of the molten globule state. Proteins 16, 115–140 (1993).

    Article  CAS  Google Scholar 

  6. Dobson, C.M. Unfolded proteins, compact states and molten globules. Curr. Opin. struct. Biol. 2, 6–12 (1992).

    Article  CAS  Google Scholar 

  7. Evans, P.A., Dobson, C.M. & Radford, S.E. Probing the structure of folding intermediates. Curr. Opin. struct. Biol. (in the press).

  8. Smith, L.J. et al. Human Interleukin 4: The solution structure of a four-helix-bundle protein. J. molec. Biol. 224, 899–904 (1992).

    Article  CAS  Google Scholar 

  9. Powers, R. et al. Three-dimensional solution structure of human interleukin-4 by multidimensional heteronuclear magnetic resonance Spectroscopy. Science 256, 1673–1677 (1992).

    Article  CAS  Google Scholar 

  10. Wlodawer, A., Pavlovsky, A. & Gustchina, A. Crystal structure of human recombinant interleukin-4 at 2.25 A resolution. FEBS Lett. 309, 59–64 (1992).

    Article  CAS  Google Scholar 

  11. Walter, M.R. et al. Crystal structure of recombinant human interleukin-4. J. biol. Chem. 267, 20371–20376 (1992).

    CAS  PubMed  Google Scholar 

  12. Bazan, J.F. Unravelling the structure of IL-2. Science 257, 410–412 (1992).

    Article  CAS  Google Scholar 

  13. Windsor, W.T., Syto, R., Le, H.V. & Trotta, P.P. Analysis of the conformation and stability of Escherichia coli derived recombinant human interleukin 4 by circular dichroism. Biochemistry 30, 1259–1264 (1991).

    Article  CAS  Google Scholar 

  14. Dryden, D. & Weir, M.P. Evidence for an acid-induced molten-globule state in interleukin-2; a fluorescence and circular dichroism study. Biochim. biophys. Acta 1078, 94–100 (1991).

    Article  CAS  Google Scholar 

  15. Stryer, L. The interaction of a naphthalene dye with apomyoglobin and apohemoglobin: A fluorescent probe of non-polar binding sites. J. molec. Biol. 13, 482–495 (1965).

    Article  CAS  Google Scholar 

  16. Arakawa, T. & Kenney, W.C. Secondary structure of interleukin-2(Ala125) in unfolded state. Int. J. Peptide Protein Res. 31, 468–473 (1988).

    Article  CAS  Google Scholar 

  17. Redfield, C., Boyd, J., Smith, L.J., Smith, R.A.G. & Dobson, C.M. Loop mobility in a four-helix-bundlepProtein: 15N NMR relaxation measurements on human interleukin-4. Biochemistry 31, 10431–10437 (1992).

    Article  CAS  Google Scholar 

  18. Kay, L.E., Torchia, D.A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972–8979 (1989).

    Article  CAS  Google Scholar 

  19. Wüthrich, K. NMR of Proteins and Nucleic Acids (Wiley, New York, 1986).

    Book  Google Scholar 

  20. Dyson, H.J., Rance, M., Houghten, R.A., Wright, P.E. & Lerner, R.A. Folding of immunogenic peptide fragments of proteins in water solution. II. The nascent helix. J. molec. Biol. 201, 201–217 (1988).

    Article  CAS  Google Scholar 

  21. Dyson, H.J. & Wright, P.E. Defining solution conformations of small linear peptides. A. Rev. Biophys. biophys. Chem. 20, 519–538 (1991).

    Article  CAS  Google Scholar 

  22. Redfield, C. et al. Analysis of the solution structure of human interleukin 4 determined by heteronuclear 3D NMR techniques. submitted to J. molec. Biol.

  23. Pedersen, T.G. et al. A nuclear magnetic resonance study of the hydrogen-exchange behaviour of lysozyme in crystals and solution. J. molec. Biol. 218, 413–426 (1991).

    Article  CAS  Google Scholar 

  24. Lee, F. et al. Isolation and characterization of a mouse interleukin cDNA clone that expresses B-cell stimulatory factor 1 activities and T-cell- and mast-cell-stimulating activities. Proc. natn. Acad. Sci. U.S.A. 83, 2061–2065 (1986).

    Article  CAS  Google Scholar 

  25. Heussler, T., Eichhorn, M. & Dobbelaere, D.A.F. Cloning of a full-length cDNA encoding bovine interleukin-4 by the polymerase chain reaction. Gene 114, 273–278 (1992).

    Article  CAS  Google Scholar 

  26. Diederichs, K., Boone, T. & Karplus, P.A. Novel fold and putative receptor binding site of granulocyte-macrophage colony-stimulating factor. Science 254, 1779–1782 (1991).

    Article  CAS  Google Scholar 

  27. DeGrado, W.F., Raleigh, D.P. & Handel, T. De novo protein design: what are we learning? Curr. Opin. struct. Biol. 1, 984–993 (1991).

    Article  CAS  Google Scholar 

  28. Brunet, A.P. et al. The role of turns in the structure of an α-helical protein. Nature 364, 355–358 (1993).

    Article  CAS  Google Scholar 

  29. Baldwin, R.L. Pulsed H/D-exchange studies of folding intermediates. Curr. Opin. struct. Biol. 3, 84–91 (1993).

    Article  CAS  Google Scholar 

  30. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. J. Am. chem. Soc. 104, 4546–4570 (1982).

    Article  CAS  Google Scholar 

  31. Redfield, C. et al. Secondary structure and topology of human interleukin 4 in solution. Biochemistry 30, 11029–11035 (1991).

    Article  CAS  Google Scholar 

  32. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  33. Wishart, D.S., Sykes, B.D., & Richards, F.M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31, 1647–1651 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Redfield, C., Smith, R. & Dobson, C. Structural characterization of a highly–ordered ‘molten globule’ at low pH. Nat Struct Mol Biol 1, 23–29 (1994).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing