Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Specific purine N7-nitrogens are critical for high affinity binding by the trp repressor

An Erratum to this article was published on 01 March 1994

Abstract

We have analysed the interaction of the trp represser with the trpEDCBA operator using a series of modified trp operator sequences incorporating two isosteric purine analogues that lack N7–nitrogens. Our results suggest that as well as the direct contact between Arg69 and G−9, three additional purine N7–nitrogens, implicated in specific, water–mediated contacts to the represser, are critical for formation of the high–affinity represser–operator complex. We conclude that the crystal structure obtained by Otwinowski et al. reflects high–affinity sequence–specific binding of the trp represser to the trp operator, and that in some cases proteins can use water molecules to extend amino acid side chains in order to derive favorable binding energy in complex formation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Otwinowski, Z. et al. Crystal structure of the trp represser/operator complex at atomic resolution. Nature 335, 321–329 (1988).

    Article  CAS  Google Scholar 

  2. Kumamoto, A.A., Miller, W.G. & Gunsalus, R.P. Escherichia coli tryptophan represser binds multiple sites within the aroH and trp operator. Genes Dev. 1, 556–564 (1987).

    Article  CAS  Google Scholar 

  3. Carey, J. Trp represser arms contribute binding energy without occupying unique locations on DNA. J. biol. Chem. 264, 1941–1945 (1989).

    CAS  PubMed  Google Scholar 

  4. Bass, S., Sugiono, P., Arvindson, P.W., Gunsalus, R.P. & Youderian, P. DNA specificity determinants of Escherichia coli tryptophan represser binding. Genes Dev. 1, 565–572 (1987).

    Article  CAS  Google Scholar 

  5. Kelly, R.L. & Yanofsky, C. Mutational studies with the trp represser of Escherichia coli support the helix-turn-helix model of represser recognition of operator DNA. Proc. natn. Acad. Sci. U.S.A. 82, 483–487 (1982).

    Article  Google Scholar 

  6. Bass, S., Corrills, V. & Youderian, P. Mutant trp represser with new DNA-binding specificities. Science 242, 240–245 (1988).

    Article  CAS  Google Scholar 

  7. McClarin, J.A. Structure of the DNA Eco RI endonuclease recognition complex at 3 Å resolution. Science 234, 1526–1541 (1986).

    Article  CAS  Google Scholar 

  8. Anderson, J.E., Ptashne, M. and Harrison, S.C. Structure of the repressor-operator complex of bacteriophage 434. Nature 326, 846–852 (1987).

    Article  CAS  Google Scholar 

  9. Clarke, N.D., Beamer, L.J., Goldberg, H.R., Berkower, C. & Pabo, C.O. The DNA binding arm of a delta represser: critical contacts from a flexible region Science 267, 267–270 (1991).

    Article  Google Scholar 

  10. Brennan, R.G. & Matthews, B.W. The helix-turn-helix binding motif. J. biol. Chem. 264, 1903–1906 (1989).

    CAS  PubMed  Google Scholar 

  11. Staacke, D., Walter, B., Kisters-Woike, B.V., Wilcken-Bergmann, B. & Muller-Hill, B. How trp represser binds to its operator. EMBO J. 9, 1963–1967 (1990).

    Article  CAS  Google Scholar 

  12. Marmorstein, R.Q., Sprinzl, M. & Sigler, P.B. An alkaline phosphatase protection assay to investigate trp repressor/operator interactions. Biochemistry 30, 1141–1148 (1991).

    Article  CAS  Google Scholar 

  13. Carey, J., Lewis, D.E.A., Lavoie, T.A. & Yang, J. How does trp represser bind to its operator. J. biol. Chem. 266, 24509–24513 (1991).

    CAS  PubMed  Google Scholar 

  14. Haran, T.E., Joachimiak, A. & Sigler, P.B. The DNA target of the trp represser. EMBO J. 11, 3021–3030 (1992).

    Article  CAS  Google Scholar 

  15. Seela, F. & Driller, H. Palindromic oligonucleotides containing 7-deaza-2′-deoxyguanosine: solid phase synthesis of d[(p)GG*AATTCC] octamers and recognition by endodeoxyribonuclease Eco RI. Nucleic Acids Res. 14, 2319–2333 (1986).

    Article  CAS  Google Scholar 

  16. Mazzarelli, J.M., Rajur, S.B., Iadarola, P.I. & McLaughlin, L.W. The interactions between the trp represser and its operator sequence as studied by base analogues substitution. Biochemistry 31, 5925–5936 (1992).

    Article  CAS  Google Scholar 

  17. Klig, L.S., Crawford, I.P. & Yanofsky, C. Analysis of trp repressor-operator interactions by filter binding. Nucleic Acids Res. 15, 5339–5351 (1987).

    Article  CAS  Google Scholar 

  18. Marmorstein, R.Q. & Sigler, P.B. Stereochemical effects of L-tryptophan and its analogues on the repressor's affinity for operator DNA. J. biol. Chem. 264, 9149–9154 (1989).

    CAS  PubMed  Google Scholar 

  19. Carey, J. Gel retardation at low pH resolves the trp repressor-DNA complexes for quantitative study. Proc. natn. Acad. Sci. U.S.A. 85, 975–979 (1988).

    Article  CAS  Google Scholar 

  20. Fersht, A.R. The hydrogen bond in recognition. TIBS 12, 301–304 (1987).

    CAS  Google Scholar 

  21. Fersht, A.R. Hydrogen bonding and biological specificity analyzed by protein engineering. Nature 314, 235–238 (1985).

    Article  CAS  Google Scholar 

  22. Street, I.P., Armstrong, C.R. & Wither, S.G. Hydrogen bonding and specificity. Fluorodeoxy sugars as probes of hydrogen bonding in the glycogen phosphorylase-glucose complex. Biochemistry 25 6021–6027 (1986).

    Article  CAS  Google Scholar 

  23. Aiken, C.R. & Gumport, R.I. Restriction endonucleases. Methods Enzymol. 208, 433–457 (1991).

    Article  CAS  Google Scholar 

  24. Record, M.T. Unusual DNA structures. (ed. Wells, R.D. & Harvey, S.C.) 237–252 (Springer, New York, 1988).

    Book  Google Scholar 

  25. Luisi, B.G. & Sigler, P.B. The stereochemistry and biochemistry of the trp repressor-operator complex. Biochem. biophys. Acta. 1048 113–126 (1990).

    CAS  PubMed  Google Scholar 

  26. Seela, F. & Kehne, A. Palindromic octa- and dodecanucleotides containing 2′-deoxytubercidin: synthesis, hairpin formation and recognition by endodeoxyribonuclease Eco RI. Biochemistry 26, 2232–2238 (1987).

    Article  CAS  Google Scholar 

  27. Matteucci, M. & Caruthers, M.H. Synthesis of deoxynucleotides on a polymer support. J. Am. Chem. Soc. 103, 3185–3191 (1981).

    Article  CAS  Google Scholar 

  28. McLaughlin, L.W. & Piel, N. Chromatographic purification of oligonucleotides, in Oligonudeotide synthesis, a practical approach (ed. Gait, M.J., 199–218 IRL Press, Oxford, 1984).

    Google Scholar 

  29. Lawson, C.L. & Carey, J. Tandem binding in crystals of a trp repressor/operator half-site complex. Nature 366, 178–182 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, S., Rajur, S. & McLaughlin, L. Specific purine N7-nitrogens are critical for high affinity binding by the trp repressor. Nat Struct Mol Biol 1, 18–22 (1994). https://doi.org/10.1038/nsb0194-18

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0194-18

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing