Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

How the Pseudomonas aeruginosa ExoS toxin downregulates Rac

Abstract

Pseudomonas aeruginosa is an opportunistic bacterial pathogen. One of its major toxins, ExoS, is translocated into eukaryotic cells by a type III secretion pathway. ExoS is a dual function enzyme that affects two different Ras-related GTP binding proteins. The C-terminus inactivates Ras through ADP ribosylation, while the N-terminus inactivates Rho proteins through its GTPase activating protein (GAP) activity. Here we have determined the three-dimensional structure of a complex between Rac and the GAP domain of ExoS in the presence of GDP and AlF3. Composed of 130 residues, this ExoS domain is the smallest GAP hitherto described. The GAP domain of ExoS is an all-helical protein with no obvious structural homology, and thus no recognizable evolutionary relationship, with the eukaryotic RhoGAP or RasGAP fold. Similar to other GAPs, ExoS downregulates Rac using an arginine finger to stabilize the transition state of the GTPase reaction, but the details of the ExoS–Rac interaction are unique. Considering the intrinsic resistance of P. aeruginosa to antibiotics, this might open up a new avenue towards blocking its pathogenicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Secondary and tertiary structure of ExoS-N.
Figure 2: Comparison of the ExoS-N and RhoGAP folds.
Figure 3: The interaction between Rac and ExoS-N.
Figure 4: The GAP activity of ExoS-N.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Bourne H.R., Sanders D.A. & McCormick F. Nature 348, 125–132 (1990).

    Article  CAS  Google Scholar 

  2. Bourne H.R., Sanders D.A. & McCormick F. Nature 349, 117–127 (1991).

    Article  CAS  Google Scholar 

  3. Aktories, K. J. Clin. Invest. 99, 827–829 (1997).

    Article  CAS  Google Scholar 

  4. Hardt, W.D., Chen, L.M., Schuebel, K.E., Bustelo, X.R. & Galán, J.E. Cell 93, 815–826 (1998).

    Article  CAS  Google Scholar 

  5. Goehring, U.M., Schmidt, G., Pederson, K.J., Aktories, K. & Barbieri, J.T. J. Biol. Chem. 274, 36369–36372 (1999).

    Article  CAS  Google Scholar 

  6. Fu, Y.X. & Galán, J.E. Nature 401, 293–297 (1999).

    Article  CAS  Google Scholar 

  7. Pawel-Rammingen, U. et al. Mol. Microbiol. 36, 737–748 (2000).

    Article  Google Scholar 

  8. Scheffzek, K., Stephan, I., Jensen, O.N., Illenberger, D. & Gierschik, P. Nature Struct. Biol. 7, 122–126 (2000).

    Article  CAS  Google Scholar 

  9. Scheffzek, K. et al. Science 277, 333–338 (1997).

    Article  CAS  Google Scholar 

  10. Rittinger, K., Walker, P.A., Eccleston, J.F., Smerdon, S.J. & Gamblin, S.J. Nature 389, 758–762 (1997).

    Article  CAS  Google Scholar 

  11. Nassar, N., Hoffman, G.R., Manor, D., Clardy, J.C. & Cerione, R.A. Nature Struct. Biol. 5, 1047–1052 (1998).

    Article  CAS  Google Scholar 

  12. Rak, A. et al. EMBO J. 19, 5105–5113 (2000).

    Article  CAS  Google Scholar 

  13. Hillig, R.C. et al. Mol. Cell 3, 781–791 (1999).

    Article  CAS  Google Scholar 

  14. Goldberg, J. Cell 96, 893–902 (1999).

    Article  CAS  Google Scholar 

  15. Scheffzek, K., Ahmadian, M.R. & Wittinghofer, A. Trends Biochem. Sci. 23, 257–262 (1998).

    Article  CAS  Google Scholar 

  16. Tesmer, J.J., Berman, D.M., Gilman, A.G. & Sprang, S.R. Cell 89, 251–261 (1997).

    Article  CAS  Google Scholar 

  17. Holm, L. & Sander, C. Nucleic Acids Res. 27, 244–247 (1999).

    Article  CAS  Google Scholar 

  18. Graham, D.L., Eccleston, J.F. & Lowe, P.N. Biochemistry 38, 985–991 (1999).

    Article  CAS  Google Scholar 

  19. Ahmadian, M.R., Stege, P., Scheffzek, K. & Wittinghofer, A. Nature Struct. Biol. 4, 686–689 (1997).

    Article  CAS  Google Scholar 

  20. Wittinghofer, A. Curr. Biol. 7, R682–R685 (1997).

    Article  CAS  Google Scholar 

  21. Schlichting, I. & Reinstein, J. Nature Struct. Biol. 6, 721–723 (1999).

    Article  CAS  Google Scholar 

  22. Caron, E. & Hall, A. Science 282, 1717–1721 (1998).

    Article  CAS  Google Scholar 

  23. Massol, P., Montcourrier, P., Guillemot, J.C. & Chavrier, P. EMBO J. 17, 6219–6229 (1998).

    Article  CAS  Google Scholar 

  24. Otwinowski, Z. & Minor, D.L. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  25. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  26. Perrakis, A., Morris, R. & Lamzin, V.S. Nature Struct. Biol. 6, 458–463 (1999).

    Article  CAS  Google Scholar 

  27. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard . Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  28. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  29. Laskowski, R.A., MacArthur, M.W. & Moss, D.S & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  30. Hooft R.W.W., Vriend G., Sander C. & Abola E.E., Nature 381, 272 (1996).

    Article  CAS  Google Scholar 

  31. Kabsch, W. & Sander, C. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  32. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. McSweeny, A. Perrakis and ESRF for beam-time allocation and help during data collection. We additionally thank E. Carrier and A. Gerhards for technical assistance, M. Hess for help with the figures, K. Scheffzek for carefully reading the manuscript, and R. Schebaum for secretarial assistance. J.T.B. was supported by the NIH, A.W. by the DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Wittinghofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Würtele, M., Wolf, E., Pederson, K. et al. How the Pseudomonas aeruginosa ExoS toxin downregulates Rac. Nat Struct Mol Biol 8, 23–26 (2001). https://doi.org/10.1038/83007

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83007

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing