Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence concerning rate-limiting steps in protein folding from the effects of trifluoroethanol

Abstract

The refolding kinetics of 13 proteins have been studied in the presence of 2,2,2-trifluoroethanol (TFE). Low concentrations of TFE increased the folding rates of all the proteins, whereas higher concentrations have the opposite effect. The extent of deceleration of folding correlates closely with similar effects of guanidine hydrochloride and can be related to the burial of accessible surface area during folding. For those proteins folding in a two-state manner, the extent of acceleration of folding correlates closely with the number of local backbone hydrogen bonds in the native structure. For those proteins that fold in a multistate manner, however, the extent of acceleration is much smaller than that predicted from the data for two-state proteins. These results support the concept that for two-state proteins the search for native-like contacts is a key aspect of the folding reaction, whereas the rate-determining steps for folding of multistate proteins are associated with the reorganization of stable structure within a collapsed state or with the search for native-like interactions within less structured regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Natural logarithm of the refolding rate constants (ln kobs) in s-1 as a function of TFE concentration for a, cAcP; b, FNIII; c, Fyn-SH3; d, BLA.
Figure 2: Correlations between a, the extent of acceleration of folding by TFE (mac R-1 T-1) and the number of local backbone hydrogen bonds (NLH), in the native state, and b, between the extent of deceleration of folding by TFE (mdec R-1 T-1) and by GdnHCl (mGdnHCl R-1 T-1).
Figure 3: Schematic representations of three different scenarios for a protein folding process.
Figure 4: Correlations between the extent of deceleration (mdec R-1 T-1) and a, ΔASAN->U, b, ΔASAnonpolar or c, ΔASApolar.

Similar content being viewed by others

References

  1. Buck, M. Q. Rev. Biophy. 31, 297–355 (1998).

    Article  CAS  Google Scholar 

  2. Hamada, D., Segawa, S. & Goto, Y. Nature Struct. Biol. 3, 868– 873 (1996).

    Article  CAS  Google Scholar 

  3. Lu, H., Buck, M., Radford, S.E. & Dobson, C.M. J. Mol. Biol. 265, 112–117 ( 1997).

    Article  CAS  Google Scholar 

  4. Kentsis, A. & Sosnick, T.R. Biochemistry 37, 14613–14622 (1998).

    Article  CAS  Google Scholar 

  5. Chiti, F. et al. Nature Struct. Biol. 6, 380– 387 (1999).

    Article  CAS  Google Scholar 

  6. Main, E.R.G., Fulton, K.F. & Jackson, S.E. J. Mol. Biol. 291, 429– 444 (1999).

    Article  CAS  Google Scholar 

  7. Main, E.R.G. & Jackson, S.E. Nature Struct. Biol. 6, 831–835 (1999).

    Article  CAS  Google Scholar 

  8. Ionescu, R.M. & Matthews, C.R. Nature Struct. Biol. 6, 304–306 (1999).

    Article  CAS  Google Scholar 

  9. Jackson, S.E. & Fersht, A.R. Biochemistry 30, 10428–10443 (1991).

    Article  CAS  Google Scholar 

  10. Plaxco, K.W., Simons, K.T. & Baker, D. J. Mol. Biol. 277, 985– 994 (1998).

    Article  CAS  Google Scholar 

  11. Colón, W., Elöve, G.A., Wakem, L.P., Sherman, F. & Roder, H. Biochemistry 35, 5538–3349 (1996).

    Article  Google Scholar 

  12. Kuwajima, K., Mitani, M. & Sugai, S. J. Mol. Biol. 206, 547– 561 (1989).

    Article  CAS  Google Scholar 

  13. Forge, V. et al. J. Mol. Biol. 288, 673– 688 (1999).

    Article  CAS  Google Scholar 

  14. Kuwajima, K. Proteins Struct. Funct. Genet. 6, 87– 103 (1989).

    Article  CAS  Google Scholar 

  15. Ptitsyn, O.B. Trends Biochem. Sci. 237, 376–379 (1995).

    Article  Google Scholar 

  16. Jennings, P.A. & Wright, P.E. Science 262, 892–896 (1993).

    Article  CAS  Google Scholar 

  17. Radford, S.E., Dobson, C.M. & Evans, P.A. Nature 385, 302– 307 (1992).

    Article  Google Scholar 

  18. Segawa, S. & Sugihara, M. Biopolymers 23, 2473–2488 (1984).

    Article  CAS  Google Scholar 

  19. Myers, J.K., Pace, N. & Scholtz, J.M. Protein Sci. 4, 2138– 2148 (1995).

    Article  CAS  Google Scholar 

  20. Makhatadze, G.I. & Privalov, P.L. J. Mol. Biol. 226, 491–505 ( 1992).

    Article  CAS  Google Scholar 

  21. Dobson, C.M., Săli, A. & Karplus, M. Angew. Chem. Int. Edn Engl. 37, 868–893 (1998).

    Article  Google Scholar 

  22. Guijarro, J.I., Morton, C.J., Plaxco, K.W., Campbell, I.D. & Dobson, C.M. J. Mol. Biol. 276, 657–667 (1998).

    Article  CAS  Google Scholar 

  23. Kabsch, W. & Sander, C. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  24. Koradi, R., Billeter, M. & Wüthrich, K. J. Mol. Graphics, 14, 51– 55 (1996).

  25. Plaxco, K.W. et al. 37, 2529–2537 (1998).

  26. Goto, Y. & Hamaguchi, K. J. Mol. Biol. 156, 891–910 (1982).

    Article  CAS  Google Scholar 

  27. Walkenhorst, W.F., Green, S.M. & Roder, H. Biochemistry 36, 5795– 5805 (1997).

    Article  CAS  Google Scholar 

  28. Kragelund, B.B. et al. J. Mol. Biol. 256, 187– 200 (1996).

    Article  CAS  Google Scholar 

  29. Plaxco, K.W., Spitzfaden, C., Campbell, I.D. & Dobson, C.M. J. Mol. Biol. 270, 763–770 (1997).

    Article  CAS  Google Scholar 

  30. Clarke, J. Hamill, S.J. & Johnson, C.M. J. Mol. Biol. 270, 771– 778 (1997).

    Article  CAS  Google Scholar 

  31. Wildegger, G. & Kiefhaber, T. J. Mol. Biol. 270, 294–304 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to G. Ramponi, J. Clarke, Y. Goto, B.B. Kragelund, F.M. Poulsen, J. Bright, I.D. Campbell and J. Zurdo for gifts of proteins. We also acknowledge M. Buck, B.B. Kragelund, S.E. Jackson and K.W. Plaxco for valuable discussions. The Oxford Centre for Molecular Sciences is supported by the United Kingdom BBSRC, EPSRC and MRC. The Dipartimento di Scienze Biochimiche, Università di Firenze, is supported by MURST (fondi ex 40% - Folding e Misfolding di Proteine). A JSPS Postdoctoral Fellowships for Research Abroad supports D.H. This work was also supported in part by an International Research Scholars award from the Howard Hughes Medical Institute and by a programme grant from the Wellcome Trust (C.M.D.), the Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan (M.K.) and the European Community (C.M.D., F.C. and J.I.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Dobson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamada, D., Chiti, F., Guijarro, J. et al. Evidence concerning rate-limiting steps in protein folding from the effects of trifluoroethanol. Nat Struct Mol Biol 7, 58–61 (2000). https://doi.org/10.1038/71259

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing