Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

3D map of the plant photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis

Abstract

Here we describe the first 3D structure of the photosystem II (PSII) supercomplex of higher plants, constructed by single particle analysis of images obtained by cryoelectron microscopy. This large multisubunit membrane protein complex functions to absorb light energy and catalyze the oxidation of water and reduction of plastoquinone. The resolution of the 3D structure is 24 Å and emphasizes the dimeric nature of the supercomplex. The extrinsic proteins of the oxygen-evolving complex (OEC) are readily observed as a tetrameric cluster bound to the lumenal surface. By considering higher resolution data, obtained from electron crystallography, it has been possible to relate the binding sites of the OEC proteins with the underlying intrinsic membrane subunits of the photochemical reaction center core. The model suggests that the 33 kDa OEC protein is located towards the CP47/D2 side of the reaction center but is also positioned over the C-terminal helices of the D1 protein including its CD lumenal loop. In contrast, the model predicts that the 23/17 kDa OEC proteins are positioned at the N-terminus of the D1 protein incorporating the AB lumenal loop of this protein and two other unidentified transmembrane helices. Overall the 3D model represents a significant step forward in revealing the structure of the photosynthetic OEC whose activity is required to sustain the aerobic atmosphere on our planet.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein composition, electron micrographs and 3D analysis of the PSII supercomplex.
Figure 2: 3D map of the PSII supercomplex at 24 Å and sections 10 Å thick through the map.
Figure 3: Positioning of major transmembrane helices of the central dimeric core region within the PSII supercomplex.
Figure 4: Structural model of the intrinsic protein subunits within the PSII supercomplex.

Similar content being viewed by others

References

  1. Hankamer, B. et al. Eur. J. Biochem. 243, 422– 429 (1997).

    Article  CAS  Google Scholar 

  2. Eshaghi, S., Andersson, B. & Barber, J. FEBS Lett. 446, 23– 26 (1999).

    Article  CAS  Google Scholar 

  3. Diner, B.A. & Babcock, G.T. In Oxygenic photosynthesis: the light reactions (eds Ort, D.R. & Yocum, C.F.) 213– 247 (Kluwer, Dordrecht, The Netherlands; 1996).

    Google Scholar 

  4. Boekema, E.J., Nield, J., Hankamer, B. & Barber, J. Eur. J. Biochem. 252, 268–276 ( 1998).

    Article  CAS  Google Scholar 

  5. Harauz, G. & van Heel, M. Optic 73, 146–156 (1986).

    Google Scholar 

  6. Orlova, E.V. et al. J. Mol. Biol. 271, 417– 437 (1997).

    Article  CAS  Google Scholar 

  7. Boekema, E.J. et al. Proc. Natl. Acad. Sci. USA 92, 175– 179 (1995).

    Article  CAS  Google Scholar 

  8. Hankamer, B., Barber, J. & Boekema, E.J. Annu. Rev. Plant Phys. Mol. Biol. 48, 641–671 (1997).

    Article  CAS  Google Scholar 

  9. Andersson, B., Larsson, C., Jansson, C., Ljungberg, U. & Akerlund, H.-E. Biochim. Biophys. Acta 766, 21–28 (1984).

    Article  CAS  Google Scholar 

  10. Xu, Q. & Bricker, T. J. Biol. Chem. 267, 25816–25821 (1992).

    CAS  PubMed  Google Scholar 

  11. Murata, M., Miyao, M., Matsunami, H. & Kuwabara, T. Biochim. Biophys. Acta 765, 363–369 ( 1984).

    Article  CAS  Google Scholar 

  12. Barber, J., Nield, J., Morris, E.P. & Hankamer, B. Trends Biochem. Sci. 278, 43–45 ( 1999).

    Article  Google Scholar 

  13. Hankamer, B., Morris, E.P. & Barber, J. Nature Struct. Biol. 6, 560– 564 (1999).

    Article  CAS  Google Scholar 

  14. Bricker, T.M. Photosynth. Res. 24, 1–13 (1990).

    Article  CAS  Google Scholar 

  15. Rhee, K.-H., Morris, E.P., Barber, J & Kühlbrandt, W. Nature 396, 283–286 ( 1998).

    Article  CAS  Google Scholar 

  16. Kühlbrandt, W., Wang, D.N. & Fujiyoshi, Y. Nature 367, 614– 621 (1994).

    Article  Google Scholar 

  17. Deisenhofer, J., Epp, O., Miki, K., Huber, R. & Michel, H. Nature 18, 618– 624 (1985).

    Article  Google Scholar 

  18. Debus, R.J. Biochim. Biophys. Acta 1102, 269–352 (1992).

    Article  CAS  Google Scholar 

  19. Nixon, P.J. & Diner, B.A. Biochemistry 31, 942–948 (1992).

    Article  CAS  Google Scholar 

  20. Seidler, A. Biochim. Biophys. Acta 1277, 35–60 (1996).

    Article  Google Scholar 

  21. Seibert, M., DeWit, M., & Staehelin, L.A. J. Cell Biol. 105, 2257– 2265 (1987).

    Article  CAS  Google Scholar 

  22. Simpson, D.J. & Andersson B. Carlsberg Res. Commun. 51, 467–474 (1986).

    Article  CAS  Google Scholar 

  23. Boekema, E.J. & van Roon, H. & Dekker, J.P. FEBS Lett. 424, 95– 99 (1998).

    Article  CAS  Google Scholar 

  24. Dubochet, J. et al. Quart. Rev. Biophys. 21, 129– 228 (1988).

    Article  CAS  Google Scholar 

  25. van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. J. Struct. Biol. 116, 17– 24 (1996).

    Article  CAS  Google Scholar 

  26. Dube, P., Tavares, P., Lurz, R. & van Heel, M. EMBO J. 12, 1303–1309 (1993).

    Article  CAS  Google Scholar 

  27. Schatz, M., Orlova, E.V., Dube, P., Jäger, J. & van Heel, M. J. Struct. Biology 114, 28– 44 (1995).

    Article  CAS  Google Scholar 

  28. van Heel, M. Ultramicroscopy 21, 111–124 (1987).

    Article  CAS  Google Scholar 

  29. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjelgaard, M. Acta Crystallogr. 47, 110–119 ( 1991).

    Article  Google Scholar 

  30. Sheehan, B., Fuller, S.D., Pique, M.E. & Yeager, M. J. Struct. Biol. 116, 99–106 (1996).

    Article  CAS  Google Scholar 

  31. Moskalenko, A.A., Barbato, R. & Giacometti, G.M. FEBS Lett. 314, 271– 274 (1992).

    Article  CAS  Google Scholar 

  32. Harrer, R., Bassi, R., Testi, M.G. & Schaefer, C. Eur. J. Biochem. 255, 196–205 ( 1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank H. Stark for assisting with the cryoelectron microscopy. We also acknowledge M. Schatz and R. Schmidt for their input through Imagic Science, GmbH, Berlin. We particularly thank B. Hankamer for valuable discussions. Financial support for the work was from the BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Barber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nield, J., Orlova, E., Morris, E. et al. 3D map of the plant photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis. Nat Struct Mol Biol 7, 44–47 (2000). https://doi.org/10.1038/71242

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing