Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Potentiating prostate cancer immunotherapy with oncolytic viruses

Key Points

  • Immunologically, prostate cancer is amenable to currently available, as well as emerging, cancer immunotherapies

  • Tumour-associated immunosuppressive mechanisms restrict the development of antitumour immune responses and are the largest barrier to the effectiveness of immunotherapies for prostate cancer

  • Oncolytic viruses can target prostate cancer through three mechanisms: direct killing of tumour cells through oncolysis, destruction of the tumour vasculature, and initiation of antitumour immunity

  • Oncolytic viruses can override tumour-associated immunosuppressive mechanisms and create an environment conducive to the development of antigen-specific and protective antitumour immunity

  • Oncolytic-virus-induced reprogramming of the tumour microenvironment can be exploited in strategic treatment combinations to achieve improved effectiveness of otherwise subpar cancer immunotherapies, including those based on immune checkpoint inhibitors

Abstract

The clinical effectiveness of immunotherapies for prostate cancer remains subpar compared with that for other cancers. The goal of most immunotherapies is the activation of immune effectors, such as T cells and natural killer cells, as the presence of these activated mediators positively correlates with patient outcomes. Clinical evidence shows that prostate cancer is immunogenic, accessible to the immune system, and can be targeted by antitumour immune responses. However, owing to the detrimental effects of prostate-cancer-associated immunosuppression, even the newest immunotherapeutic approaches fail to initiate the clinically desired antitumour immune reaction. Oncolytic viruses, originally used for their preferential cancer-killing activity, are now being recognized for their ability to overturn cancer-associated immune evasion and promote otherwise absent antitumour immunity. This oncolytic-virus-induced subversion of tumour-associated immunosuppression can potentiate the effectiveness of current immunotherapeutics, including immune checkpoint inhibitors (for example, antibodies against programmed cell death protein 1 (PD1), programmed cell death 1 ligand 1 (PDL1), and cytotoxic T lymphocyte antigen 4 (CTLA4)) and chemotherapeutics that induce immunogenic cell death (for example, doxorubicin and oxaliplatin). Importantly, oncolytic-virus-induced antitumour immunity targets existing prostate cancer cells and also establishes long-term protection against future relapse. Hence, the strategic use of oncolytic viruses as monotherapies or in combination with current immunotherapies might result in the next breakthrough in prostate cancer immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of oncolytic-virus-based cancer therapy.
Figure 2: Subversion of prostate-cancer-associated immunosuppression by oncolytic viruses.
Figure 3: The utility of virotherapy to achieve effective prostate cancer immunotherapy.

Similar content being viewed by others

References

  1. Attard, G. et al. Prostate cancer. Lancet 387, 70–82 (2016).

    Article  PubMed  Google Scholar 

  2. McNeel, D. G. et al. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of prostate carcinoma. J. Immunother. Cancer. 4, 92 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Maia, M. C. & Hansen, A. R. A comprehensive review of immunotherapies in prostate cancer. Crit. Rev. Oncol. Hematol. 113, 292–303 (2017).

    Article  PubMed  Google Scholar 

  4. Karan, D., Holzbeierlein, J. M., Van Veldhuizen, P. & Thrasher, J. B. Cancer immunotherapy: a paradigm shift for prostate cancer treatment. Nat. Rev. Urol. 9, 376–385 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Yap, T. A. et al. Drug discovery in advanced prostate cancer: translating biology into therapy. Nat. Rev. Drug Discov. 15, 699–718 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer. Cell. 27, 450–461 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Drake, C. G. Prostate cancer as a model for tumour immunotherapy. Nat. Rev. Immunol. 10, 580–593 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kiessling, A. et al. Advances in specific immunotherapy for prostate cancer. Eur. Urol. 53, 694–708 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Silvestri, I. et al. A perspective of immunotherapy for prostate cancer. Cancers 8, E64 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Di Lorenzo, G., Buonerba, C. & Kantoff, P. W. Immunotherapy for the treatment of prostate cancer. Nat. Rev. Clin. Oncol. 8, 551–561 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Lichty, B. D., Breitbach, C. J., Stojdl, D. F. & Bell, J. C. Going viral with cancer immunotherapy. Nat. Rev. Cancer. 14, 559–567 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Taguchi, S., Fukuhara, H., Homma, Y. & Todo, T. Current status of clinical trials assessing oncolytic virus therapy for urological cancers. Int. J. Urol. 24, 342–351 (2017).

    Article  PubMed  Google Scholar 

  13. Gujar, S., Pol, J. G., Kim, Y., Lee, P. W. & Kroemer, G. Antitumor benefits of antiviral immunity: an underappreciated aspect of oncolytic virotherapies. Trends Immunol. https://doi.org/10.1016/j.it.2017.11.006 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Delwar, Z., Zhang, K., Rennie, P. S. & Jia, W. Oncolytic virotherapy for urological cancers. Nat. Rev. Urol. 13, 334–352 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Gravitz, L. Cancer immunotherapy. Nature 504, S1 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peshwa, M. V., Shi, J. D., Ruegg, C., Laus, R. & van Schooten, W. C. Induction of prostate tumor-specific CD8+ cytotoxic T-lymphocytes in vitro using antigen-presenting cells pulsed with prostatic acid phosphatase peptide. Prostate 36, 129–138 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Machlenkin, A. et al. Human CTL epitopes prostatic acid phosphatase-3 and six-transmembrane epithelial antigen of prostate-3 as candidates for prostate cancer immunotherapy. Cancer Res. 65, 6435–6442 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Johnson, L. E., Frye, T. P., Chinnasamy, N., Chinnasamy, D. & McNeel, D. G. Plasmid DNA vaccine encoding prostatic acid phosphatase is effective in eliciting autologous antigen-specific CD8+ T cells. Cancer Immunol. Immunother. 56, 885–895 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Gujar, S. A., Pan, D. A., Marcato, P., Garant, K. A. & Lee, P. W. Oncolytic virus-initiated protective immunity against prostate cancer. Mol. Ther. 19, 797–804 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pitt, J. M. et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity 44, 1255–1269 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Barach, Y. S., Lee, J. S. & Zang, X. T cell coinhibition in prostate cancer: new immune evasion pathways and emerging therapeutics. Trends Mol. Med. 17, 47–55 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vesely, M. D. & Schreiber, R. D. Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. Ann. NY Acad. Sci. 1284, 1–5 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Ostrand-Rosenberg, S., Sinha, P., Beury, D. W. & Clements, V. K. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin. Cancer Biol. 22, 275–281 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van der Burg, S. H., Arens, R., Ossendorp, F., van Hall, T. & Melief, C. J. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat. Rev. Cancer. 16, 219–233 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Smyth, M. J., Ngiow, S. F., Ribas, A. & Teng, M. W. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol. 13, 143–158 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Modena, A. et al. Immune checkpoint inhibitors and prostate cancer: a new frontier? Oncol. Rev. 10, 293 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gujar, S. et al. Multifaceted therapeutic targeting of ovarian peritoneal carcinomatosis through virus-induced immunomodulation. Mol. Ther. 21, 338–347 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Gujar, S. A., Marcato, P., Pan, D. & Lee, P. W. Reovirus virotherapy overrides tumor antigen presentation evasion and promotes protective antitumor immunity. Mol. Cancer. Ther. 9, 2924–2933 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Zhao, X., Chester, C., Rajasekaran, N., He, Z. & Kohrt, H. E. Strategic combinations: the future of oncolytic virotherapy with reovirus. Mol. Cancer. Ther. 15, 767–773 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Fend, L. et al. Immune checkpoint blockade, immunogenic chemotherapy or IFN-alpha blockade boost the local and abscopal effects of oncolytic virotherapy. Cancer Res. 77, 4146–4157 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Tanoue, K. et al. Armed oncolytic adenovirus-expressing PD-L1 mini-body enhances antitumor effects of chimeric antigen receptor T cells in solid tumors. Cancer Res. 77, 2040–2051 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Montironi, R. et al. Emerging immunotargets and immunotherapies in prostate cancer. Curr. Drug Targets 17, 777–782 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Lu, X. et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 543, 728–732 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gao, J. et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat. Med. 23, 551–555 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zitvogel, L., Apetoh, L., Ghiringhelli, F. & Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 8, 59–73 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baas, W. et al. Immune characterization of the programmed death receptor pathway in high risk prostate cancer. Clin. Genitourin. Cancer 15, 577–581 (2017).

    Article  PubMed  Google Scholar 

  42. Madan, R. A. & Gulley, J. L. Prostate cancer: Better VISTAs ahead? Potential and pitfalls of immunotherapy. Nat. Rev. Urol. 14, 455–456 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sfanos, K. S. et al. Human prostate-infiltrating CD8+ T lymphocytes are oligoclonal and PD-1+. Prostate 69, 1694–1703 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. De Marzo, A. M. et al. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 7, 256–269 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Taylor, B. S. et al. Integrative genomic profiling of human prostate cancer. Cancer. Cell. 18, 11–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tan, S. H. et al. Evaluation of ERG responsive proteome in prostate cancer. Prostate 74, 70–89 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Kim, J. J. et al. Induction of immune responses and safety profiles in rhesus macaques immunized with a DNA vaccine expressing human prostate specific antigen. Oncogene 20, 4497–4506 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Sfanos, K. S. et al. Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clin. Cancer Res. 14, 3254–3261 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lopez-Bujanda, Z. & Drake, C. G. Myeloid-derived cells in prostate cancer progression: phenotype and prospective therapies. J. Leukoc. Biol. 102, 393–406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sizemore, G. M. et al. Stromal PTEN inhibits the expansion of mammary epithelial stem cells through Jagged-1. Oncogene 36, 2297–2308 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Kaukonen, R. et al. Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription. Nat. Commun. 7, 12237 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Turley, S. J., Cremasco, V. & Astarita, J. L. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat. Rev. Immunol. 15, 669–682 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer. 16, 582–598 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Nagarsheth, N., Wicha, M. S. & Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol. 17, 559–572 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vinay, D. S. et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 35 (Suppl.), S185–S198 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Smith, B. A. et al. A basal stem cell signature identifies aggressive prostate cancer phenotypes. Proc. Natl Acad. Sci. USA 112, E6544–E6552 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chauhan, A. & Anthony, L. Immune oncology and neuroendocrine tumors. Ann. Oncol. 28, 2322–2323 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Alvarado, A. G. et al. Glioblastoma cancer stem cells evade innate immune suppression of self-renewal through reduced TLR4 expression. Cell. Stem Cell. 20, 450–461.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sultan, M. et al. Hide-and-seek: the interplay between cancer stem cells and the immune system. Carcinogenesis 38, 107–118 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Bishop, J., Sangha, B., Gleave, M. & Zoubeidi, A. Immune evasion strategies of neuroendocrine-like Enzalutamide resistant prostate cancer. J. Immunother. Cancer 1 (Suppl. 1), P147 (2013).

    Article  PubMed Central  Google Scholar 

  62. Bronte, V. et al. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J. Exp. Med. 201, 1257–1268 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mercader, M. et al. T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer. Proc. Natl Acad. Sci. USA 98, 14565–14570 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Healy, C. G. et al. Impaired expression and function of signal-transducing zeta chains in peripheral T cells and natural killer cells in patients with prostate cancer. Cytometry 32, 109–119 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Ness, N. et al. The prognostic role of immune checkpoint markers programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) in a large, multicenter prostate cancer cohort. Oncotarget 8, 26789–26801 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Morse, M. D. & McNeel, D. G. T cells localized to the androgen-deprived prostate are TH1 and TH17 biased. Prostate 72, 1239–1247 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, Q. et al. Targeting Th17-IL-17 pathway in prevention of micro-invasive prostate cancer in a mouse model. Prostate 77, 888–899 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Foster, B. A., Gingrich, J. R., Kwon, E. D., Madias, C. & Greenberg, N. M. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res. 57, 3325–3330 (1997).

    CAS  PubMed  Google Scholar 

  69. Hurwitz, A. A., Foster, B. A., Allison, J. P., Greenberg, N. M. & Kwon, E. D. in Current Protocols in Immunology (eds Coligan, J. E. et al.) Unit 20.5 (2001).

    Google Scholar 

  70. Won, H. et al. TLR9 expression and secretion of LIF by prostate cancer cells stimulates accumulation and activity of polymorphonuclear MDSCs. J. Leukoc. Biol. 102, 423–436 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Leventhal, D. S. et al. Dendritic cells coordinate the development and homeostasis of organ-specific regulatory T cells. Immunity 44, 847–859 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pasero, C. et al. Inherent and tumor-driven immune tolerance in the prostate microenvironment impairs natural killer cell antitumor activity. Cancer Res. 76, 2153–2165 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Ammirante, M., Luo, J. L., Grivennikov, S., Nedospasov, S. & Karin, M. B-Cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464, 302–305 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Shalapour, S. et al. Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature 521, 94–98 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kwek, S. S., Cha, E. & Fong, L. Unmasking the immune recognition of prostate cancer with CTLA4 blockade. Nat. Rev. Cancer. 12, 289–297 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Goswami, S., Aparicio, A. & Subudhi, S. K. Immune checkpoint therapies in prostate cancer. Cancer J. 22, 117–120 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kambayashi, T. & Laufer, T. M. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat. Rev. Immunol. 14, 719–730 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Gujar, S. A. & Lee, P. W. Oncolytic virus-mediated reversal of impaired tumor antigen presentation. Front. Oncol. 4, 77 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wennier, S. T., Liu, J. & McFadden, G. Bugs and drugs: oncolytic virotherapy in combination with chemotherapy. Curr. Pharm. Biotechnol. 13, 1817–1833 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Marcato, P., Shmulevitz, M., Pan, D., Stoltz, D. & Lee, P. W. Ras transformation mediates reovirus oncolysis by enhancing virus uncoating, particle infectivity, and apoptosis-dependent release. Mol. Ther. 15, 1522–1530 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Russell, S. J. & Peng, K. W. Oncolytic virotherapy: a contest between apples and oranges. Mol. Ther. 25, 1107–1116 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bell, J. & McFadden, G. Viruses for tumor therapy. Cell. Host Microbe 15, 260–265 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Parato, K. A., Lichty, B. D. & Bell, J. C. Diplomatic immunity: turning a foe into an ally. Curr. Opin. Mol. Ther. 11, 13–21 (2009).

    CAS  PubMed  Google Scholar 

  84. Shmulevitz, M., Marcato, P. & Lee, P. W. Unshackling the links between reovirus oncolysis, Ras signaling, translational control and cancer. Oncogene 24, 7720–7728 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Strong, J. E., Coffey, M. C., Tang, D., Sabinin, P. & Lee, P. W. The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J. 17, 3351–3362 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Coffey, M. C., Strong, J. E., Forsyth, P. A. & Lee, P. W. Reovirus therapy of tumors with activated Ras pathway. Science 282, 1332–1334 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Kirn, D. Replication-selective oncolytic adenoviruses: virotherapy aimed at genetic targets in cancer. Oncogene 19, 6660–6669 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Andtbacka, R. H. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Rehman, H., Silk, A. W., Kane, M. P. & Kaufman, H. L. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J. Immunother. Cancer. 4, 53 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Schvartsman, G., Perez, K., Flynn, J. E., Myers, J. N. & Tawbi, H. Safe and effective administration of T-VEC in a patient with heart transplantation and recurrent locally advanced melanoma. J. Immunother. Cancer. 5, 45 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00769704 (2016).

  92. Danziger, O., Shai, B., Sabo, Y., Bacharach, E. & Ehrlich, M. Combined genetic and epigenetic interferences with interferon signaling expose prostate cancer cells to viral infection. Oncotarget 7, 52115–52134 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. DeWeese, T. L. et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res. 61, 7464–7472 (2001).

    CAS  PubMed  Google Scholar 

  94. Small, E. J. et al. A phase I trial of intravenous CG7870, a replication-selective, prostate-specific antigen-targeted oncolytic adenovirus, for the treatment of hormone-refractory, metastatic prostate cancer. Mol. Ther. 14, 107–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Freytag, S. O., Barton, K. N. & Zhang, Y. Efficacy of oncolytic adenovirus expressing suicide genes and interleukin-12 in preclinical model of prostate cancer. Gene Ther. 20, 1131–1139 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Freytag, S. O. et al. Five-year follow-up of trial of replication-competent adenovirus-mediated suicide gene therapy for treatment of prostate cancer. Mol. Ther. 15, 636–642 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Freytag, S. O. et al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res. 62, 4968–4976 (2002).

    CAS  PubMed  Google Scholar 

  98. Fukuhara, H., Homma, Y. & Todo, T. Oncolytic virus therapy for prostate cancer. Int. J. Urol. 17, 20–30 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Arulanandam, R. et al. VEGF-mediated induction of PRD1-BF1/Blimp1 expression sensitizes tumor vasculature to oncolytic virus infection. Cancer Cell. 28, 210–224 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Ilkow, C. S. et al. Reciprocal cellular cross-talk within the tumor microenvironment promotes oncolytic virus activity. Nat. Med. 21, 530–536 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Breitbach, C. J. et al. Targeting tumor vasculature with an oncolytic virus. Mol. Ther. 19, 886–894 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lucas, T. et al. Adenoviral-mediated endothelial precursor cell delivery of soluble CD115 suppresses human prostate cancer xenograft growth in mice. Stem Cells 27, 2342–2352 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Passer, B. J. et al. Combination of vinblastine and oncolytic herpes simplex virus vector expressing IL-12 therapy increases antitumor and antiangiogenic effects in prostate cancer models. Cancer Gene Ther. 20, 17–24 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Jha, B. K., Dong, B., Nguyen, C. T., Polyakova, I. & Silverman, R. H. Suppression of antiviral innate immunity by sunitinib enhances oncolytic virotherapy. Mol. Ther. 21, 1749–1757 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Munz, C., Lunemann, J. D., Getts, M. T. & Miller, S. D. Antiviral immune responses: triggers of or triggered by autoimmunity? Nat. Rev. Immunol. 9, 246–258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Getts, D. R., Chastain, E. M., Terry, R. L. & Miller, S. D. Virus infection, antiviral immunity, and autoimmunity. Immunol. Rev. 255, 197–209 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Thirukkumaran, C. M. et al. Oncolytic viral therapy for prostate cancer: efficacy of reovirus as a biological therapeutic. Cancer Res. 70, 2435–2444 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Varghese, S. et al. Enhanced therapeutic efficacy of IL-12, but not GM-CSF, expressing oncolytic herpes simplex virus for transgenic mouse derived prostate cancers. Cancer Gene Ther. 13, 253–265 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Fong, L., Ruegg, C. L., Brockstedt, D., Engleman, E. G. & Laus, R. Induction of tissue-specific autoimmune prostatitis with prostatic acid phosphatase immunization: implications for immunotherapy of prostate cancer. J. Immunol. 159, 3113–3117 (1997).

    CAS  PubMed  Google Scholar 

  110. Kottke, T. et al. Broad antigenic coverage induced by vaccination with virus-based cDNA libraries cures established tumors. Nat. Med. 17, 854–859 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Castelo-Branco, P. et al. Oncolytic herpes simplex virus armed with xenogeneic homologue of prostatic acid phosphatase enhances antitumor efficacy in prostate cancer. Gene Ther. 17, 805–810 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kim, Y. et al. Dendritic cells in oncolytic virus-based anti-cancer therapy. Viruses 7, 6506–6525 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Komaru, A. et al. Sustained and NK/CD4+ T cell-dependent efficient prevention of lung metastasis induced by dendritic cells harboring recombinant Sendai virus. J. Immunol. 183, 4211–4219 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Kruslin, B., Tomas, D., Dzombeta, T., Milkovic-Perisa, M. & Ulamec, M. Inflammation in prostatic hyperplasia and carcinoma-basic scientific approach. Front. Oncol. 7, 77 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Schenk, J. M. et al. Biomarkers of systemic inflammation and risk of incident, symptomatic benign prostatic hyperplasia: results from the prostate cancer prevention trial. Am. J. Epidemiol. 171, 571–582 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Gurel, B. et al. Chronic inflammation in benign prostate tissue is associated with high-grade prostate cancer in the placebo arm of the prostate cancer prevention trial. Cancer Epidemiol. Biomarkers Prev. 23, 847–856 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Hsing, A. W., Tsao, L. & Devesa, S. S. International trends and patterns of prostate cancer incidence and mortality. Int. J. Cancer 85, 60–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Vidal, A. C. et al. Racial differences in prostate inflammation: results from the REDUCE study. Oncotarget 8, 71393–71399 (2016).

    PubMed  PubMed Central  Google Scholar 

  119. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Adler, H. L. et al. Elevated levels of circulating interleukin-6 and transforming growth factor-beta1 in patients with metastatic prostatic carcinoma. J. Urol. 161, 182–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Yang, Y. F. et al. Antitumor effects of oncolytic adenovirus armed with PSA-IZ-CD40L fusion gene against prostate cancer. Gene Ther. 21, 723–731 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Moussavi, M. et al. Targeting and killing of metastatic cells in the transgenic adenocarcinoma of mouse prostate model with vesicular stomatitis virus. Mol. Ther. 21, 842–848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Seyedin, S. N. et al. Strategies for combining immunotherapy with radiation for anticancer therapy. Immunotherapy 7, 967–980 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Nguyen, A., Ho, L. & Wan, Y. Chemotherapy and oncolytic virotherapy: advanced tactics in the war against cancer. Front. Oncol. 4, 145 (2014).

    PubMed  PubMed Central  Google Scholar 

  125. Galluzzi, L., Bravo- San Pedro, J. M., Demaria, S., Formenti, S. C. & Kroemer, G. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nat. Rev. Clin. Oncol. 14, 247–258 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Galluzzi, L., Senovilla, L., Zitvogel, L. & Kroemer, G. The secret ally: immunostimulation by anticancer drugs. Nat. Rev. Drug Discov. 11, 215–233 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Cao, W. et al. Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nat. Immunol. 9, 1157–1164 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Olagnier, D. et al. Activation of Nrf2 signaling augments vesicular stomatitis virus oncolysis via autophagy-driven suppression of antiviral immunity. Mol. Ther. 25, 1900–1916 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Garg, A. D. & Agostinis, P. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses. Immunol. Rev. 280, 126–148 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Meng, S., Xu, J., Wu, Y. & Ding, C. Targeting autophagy to enhance oncolytic virus-based cancer therapy. Expert Opin. Biol. Ther. 13, 863–873 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Passer, B. J. et al. Oncolytic herpes simplex virus vectors and taxanes synergize to promote killing of prostate cancer cells. Cancer Gene Ther. 16, 551–560 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nielsen, L. L., Lipari, P., Dell, J., Gurnani, M. & Hajian, G. Adenovirus-mediated p53 gene therapy and paclitaxel have synergistic efficacy in models of human head and neck, ovarian, prostate, and breast cancer. Clin. Cancer Res. 4, 835–846 (1998).

    CAS  PubMed  Google Scholar 

  133. Yu, D. C. et al. Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. Cancer Res. 61, 517–525 (2001).

    CAS  PubMed  Google Scholar 

  134. Fehl, D. J. & Ahmed, M. Curcumin promotes the oncoltyic capacity of vesicular stomatitis virus for the treatment of prostate cancers. Virus Res. 228, 14–23 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Hodzic, J., Sie, D., Vermeulen, A. & van Beusechem, V. W. Functional screening identifies human miRNAs that modulate adenovirus propagation in prostate cancer cells. Hum. Gene Ther. 28, 766–780 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Mansfield, D. C. et al. Oncolytic vaccinia virus as a vector for therapeutic sodium iodide symporter gene therapy in prostate cancer. Gene Ther. 23, 357–368 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Trujillo, M. A., Oneal, M. J., McDonough, S., Qin, R. & Morris, J. C. A steep radioiodine dose response scalable to humans in sodium-iodide symporter (NIS)-mediated radiovirotherapy for prostate cancer. Cancer Gene Ther. 19, 839–844 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Muthana, M. et al. Macrophage delivery of an oncolytic virus abolishes tumor regrowth and metastasis after chemotherapy or irradiation. Cancer Res. 73, 490–495 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Gujar, S. A., Clements, D. & Lee, P. W. Two is better than one: Complementing oncolytic virotherapy with gemcitabine to potentiate antitumor immune responses. Oncoimmunology 3, e27622 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Gujar, S. A. et al. Gemcitabine enhances the efficacy of reovirus-based oncotherapy through anti-tumour immunological mechanisms. Br. J. Cancer 110, 83–93 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Schirrmacher, V., Bihari, A. S., Stucker, W. & Sprenger, T. Long-term remission of prostate cancer with extensive bone metastases upon immuno- and virotherapy: a case report. Oncol. Lett. 8, 2403–2406 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Jiang, H., Lin, J. J., Su, Z. Z., Goldstein, N. I. & Fisher, P. B. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 11, 2477–2486 (1995).

    CAS  PubMed  Google Scholar 

  144. Sarkar, D. et al. Eradication of therapy-resistant human prostate tumors using a cancer terminator virus. Cancer Res. 67, 5434–5442 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Sarkar, S. et al. Novel therapy of prostate cancer employing a combination of viral-based immunotherapy and a small molecule BH3 mimetic. Oncoimmunology 5, e1078059 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pradhan, A. K. et al. mda-7/IL-24 mediates cancer cell-specific death via regulation of miR-221 and the Beclin-1 axis. Cancer Res. 77, 949–959 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Su, Z. Z. et al. Ionizing radiation enhances therapeutic activity of mda-7/IL-24: overcoming radiation- and mda-7/IL-24-resistance in prostate cancer cells overexpressing the antiapoptotic proteins bcl-xL or bcl-2. Oncogene 25, 2339–2348 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Lebedeva, I. V. et al. Strategy for reversing resistance to a single anticancer agent in human prostate and pancreatic carcinomas. Proc. Natl Acad. Sci. USA 104, 3484–3489 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Fukuhara, H., Ino, Y., Kuroda, T., Martuza, R. L. & Todo, T. Triple gene-deleted oncolytic herpes simplex virus vector double-armed with interleukin 18 and soluble B7-1 constructed by bacterial artificial chromosome-mediated system. Cancer Res. 65, 10663–10668 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Varghese, S., Rabkin, S. D., Nielsen, P. G., Wang, W. & Martuza, R. L. Systemic oncolytic herpes virus therapy of poorly immunogenic prostate cancer metastatic to lung. Clin. Cancer Res. 12, 2919–2927 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Liu, C., Hasegawa, K., Russell, S. J., Sadelain, M. & Peng, K. W. Prostate-specific membrane antigen retargeted measles virotherapy for the treatment of prostate cancer. Prostate 69, 1128–1141 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Madan, R. A. et al. Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 13, 501–508 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01867333 (2017).

  154. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01875250 (2017).

  155. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02861573. (2017).

  156. Harris, K. S. & Kerr, B. A. Prostate cancer stem cell markers drive progression, therapeutic resistance, and bone metastasis. Stem Cells Int. 2017, 8629234 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Velardi, E. et al. Sex steroid blockade enhances thymopoiesis by modulating Notch signaling. J. Exp. Med. 211, 2341–2349 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Goldberg, G. L. et al. Sex steroid ablation enhances lymphoid recovery following autologous hematopoietic stem cell transplantation. Transplantation 80, 1604–1613 (2005).

    Article  PubMed  Google Scholar 

  159. Tang, S. & Dubey, P. Opposing effects of androgen ablation on immune function in prostate cancer. Oncoimmunology 1, 1220–1221 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Tang, S., Moore, M. L., Grayson, J. M. & Dubey, P. Increased CD8+ T-cell function following castration and immunization is countered by parallel expansion of regulatory T cells. Cancer Res. 72, 1975–1985 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kissick, H. T. et al. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc. Natl Acad. Sci. USA 111, 9887–9892 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Pu, Y. et al. Androgen receptor antagonists compromise T cell response against prostate cancer leading to early tumor relapse. Sci. Transl Med. 8, 333ra47 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Antonarakis, E. S. et al. Sequencing of Sipuleucel-T and androgen deprivation therapy in men with hormone-sensitive biochemically recurrent prostate cancer: a phase II randomized trial. Clin. Cancer Res. 23, 2451–2459 (2017).

    Article  CAS  PubMed  Google Scholar 

  164. Gamat, M. & McNeel, D. G. Androgen deprivation and immunotherapy for the treatment of prostate cancer. Endocr. Relat. Cancer 24, T297–T310 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Akira, S., Saitoh, T. & Kawai, T. Nucleic acids recognition by innate immunity. Uirusu 62, 39–45 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Alemany, R. & Cascallo, M. Oncolytic viruses from the perspective of the immune system. Future Microbiol. 4, 527–536 (2009).

    Article  CAS  PubMed  Google Scholar 

  167. Barker, H. E., Paget, J. T., Khan, A. A. & Harrington, K. J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer. 15, 409–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Murphy, J. P. et al. MHC-I ligand discovery using targeted database searches of mass spectrometry data: implications for T-cell immunotherapies. J. Proteome Res. 16, 1806–1816 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Nielsen, M. & Andreatta, M. NetMHCpan- 3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med. 8, 33 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Croft, N. P., Purcell, A. W. & Tscharke, D. C. Quantifying epitope presentation using mass spectrometry. Mol. Immunol. 68, 77–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Yadav, M. et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515, 572–576 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Comber, J. D. & Philip, R. MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines. Ther. Adv. Vaccines 2, 77–89 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Serganova, I. et al. Enhancement of PSMA-directed CAR adoptive immunotherapy by PD-1/PD-L1 blockade. Mol. Ther. Oncolyt. 4, 41–54 (2016).

    Article  CAS  Google Scholar 

  174. Amin Al Olama, A. et al. Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans. Hum. Mol. Genet. 24, 5589–5602 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fraser, M. et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 541, 359–364 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

  177. Boutros, P. C. et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat. Genet. 47, 736–745 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Chosey, L. C. et al. Biosafety in Microbiological and Biomedical Laboratories (BMBL) 5th edn (U.S. Department of Health and Human Services, 2009).

    Google Scholar 

  179. Hoos, A., Wolchok, J. D., Humphrey, R. W. & Hodi, F. S. CCR 20th Anniversary Commentary: Immune-related response criteria — capturing clinical activity in immuno-oncology. Clin. Cancer Res. 21, 4989–4991 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Freytag, S. O. et al. Prospective randomized phase 2 trial of intensity modulated radiation therapy with or without oncolytic adenovirus-mediated cytotoxic gene therapy in intermediate-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 89, 268–276 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Pol, J. et al. Trial Watch — Oncolytic viruses and cancer therapy. Oncoimmunology 5, e1117740 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02555397 (2016).

  183. [No authors listed.] UMIN-CTR Clinical Trial UMIN000010463. University Hospital Information Network https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type=summary&recptno=R000012228&language=E (2016).

  184. Vidal, L. et al. A phase I study of intravenous oncolytic reovirus type 3 Dearing in patients with advanced cancer. Clin. Cancer Res. 14, 7127–7137 (2008).

    Article  CAS  PubMed  Google Scholar 

  185. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01619813 (2016).

  186. [No authors listed.] UMIN-CTR Clinical Trial UMIN000010840. University Hospital Information Network https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type=summary&recptno=R000012688&language=E (2016).

  187. Lei, N. et al. An oncolytic adenovirus expressing granulocyte macrophage colony-stimulating factor shows improved specificity and efficacy for treating human solid tumors. Cancer Gene Ther. 16, 33–43 (2009).

    Article  CAS  PubMed  Google Scholar 

  188. Huang, X. F. et al. A broadly applicable, personalized heat shock protein-mediated oncolytic tumor vaccine. Cancer Res. 63, 7321–7329 (2003).

    CAS  PubMed  Google Scholar 

  189. Li, J. L. et al. A phase I trial of intratumoral administration of recombinant oncolytic adenovirus overexpressing HSP70 in advanced solid tumor patients. Gene Ther. 16, 376–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  190. Kaufman, H. L. et al. Phase II randomized study of vaccine treatment of advanced prostate cancer (E7897): a trial of the Eastern Cooperative Oncology Group. J. Clin. Oncol. 22, 2122–2132 (2004).

    Article  CAS  PubMed  Google Scholar 

  191. Madan, R. A., Arlen, P. M., Mohebtash, M., Hodge, J. W. & Gulley, J. L. Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer. Expert Opin. Investig. Drugs 18, 1001–1011 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Fukuhara, H., Martuza, R. L., Rabkin, S. D., Ito, Y. & Todo, T. Oncolytic herpes simplex virus vector g47delta in combination with androgen ablation for the treatment of human prostate adenocarcinoma. Clin. Cancer Res. 11, 7886–7890 (2005).

    Article  CAS  PubMed  Google Scholar 

  193. Parato, K. A. et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol. Ther. 20, 749–758 (2012).

    Article  CAS  PubMed  Google Scholar 

  194. Moussavi, M. et al. Oncolysis of prostate cancers induced by vesicular stomatitis virus in PTEN knockout mice. Cancer Res. 70, 1367–1376 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.G. and P.L. are supported by grants from Prostate Cancer Canada, Canadian Institutes of Health Research (CIHR), Terry Fox Research Institute (TFRI), and Canadian Cancer Research Institute (CCSRI). The authors thank Y. Kim for her help with graphics and manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

S.G. researched data for the article and wrote the manuscript. Both authors made substantial contributions to discussion of the article content and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Patrick Lee or Shashi Gujar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Oncolytic viruses

Viruses that preferentially infect and kill cancer cells ('onco' means cancer; 'lytic' means killing).

Tumour microenvironment

The milieu in which the tumour resides, consisting of malignant cells and nonmalignant cells, including stromal and immune cells.

Myeloid-derived suppressor cells

(MDSCs). The heterogeneous population of myeloid cells that suppress the functions of various immune cells, especially natural killer cells and T cells, through direct or indirect mechanisms.

Lactic acid

A metabolite that has the capacity to suppress the functions of immune mediators when produced as an aberrant by-product of cancer metabolism.

Tumour immune evasion

Cancers employ various suppressive mechanisms to resist the development of antitumour immune activities and, thus, evade immune-mediated attack and elimination.

Immune checkpoint inhibitors

Agents that inhibit the interactions between immune checkpoint molecules on tumour cells and their receptors on immune cells, releasing the inhibitory signal and enabling tumour-directed immune responses.

MHC ligands

Peptides that are presented in the antigen presentation groove of major histocompatibility complex (MHC) class I and class II molecules; this ligand-bound MHC complex is recognized by T cell receptors in a highly specific manner.

Immunologically privileged site

Anatomical sites or locations, such as the brain or eyes, that contain impaired or modified lymphatic drainage and immune surveillance are privileged against immune-response-induced collateral tissue damage.

Autoantibodies

Antibodies that are specific against an individual's own proteins and antigens.

Epithelial–mesenchymal transition

A biological process through which epithelial cells lose their characteristic cell polarity and adhesion properties and acquire a migratory and invasive phenotype similar to that of mesenchymal cells.

Cancer stem cells

Cancer cells that are pluripotent and have self-renewal capacity and, thus, possess stem-cell-like characteristics.

Neuroendocrine tumours

Tumours that arise from neuroendocrine cells, which are specialized cells that often produce hormones under neuronal control.

T cell anergy

A state in which T cells remain tolerant or dysfunctional.

Immunogenic cell death

A form of cell death that is accompanied by the expression of molecules that lead to the activation of dendritic cells, which subsequently prime T cells.

Tumour-associated antigens

These antigens are often preferentially expressed on tumours but can also be found in normal tissues, whereas tumour-specific antigens are usually expressed specifically in tumours, often arising from mutations or virally encoded oncoproteins.

Autophagy

A 'self-eating' homeostatic cellular process in which damaged organelles are digested under normal physiological situations and in which, during stress conditions, macromolecules, such as nucleic acids and amino acids, are recycled.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, P., Gujar, S. Potentiating prostate cancer immunotherapy with oncolytic viruses. Nat Rev Urol 15, 235–250 (2018). https://doi.org/10.1038/nrurol.2018.10

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2018.10

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer