Microfluidics for sperm analysis and selection

Key Points

  • Sperm swim using periodic but time-irreversible and unidirectional flagellar motion. When sperm swim near a boundary, hydrodynamic sperm–wall interactions result in surface accumulation and boundary-following behaviour

  • Microfluidic techniques paired with high-speed imaging have resolved the full 3D swimming patterns of sperm in bulk fluid and revealed a 2D slither swimming mode for sperm near surfaces

  • Microfluidics show promise in studying sperm rheotaxis and chemotaxis. Future research needs to focus on developing high-throughput platforms with single-cell-analysis capabilities to study human sperm chemotaxis

  • Microfluidic technologies are emerging as rapid and low-cost diagnostic alternatives for at-home and clinical male fertility testing, and technologies for additional, automated morphological analysis of sperm are needed

  • Microfluidic platforms enable selection of high-quality sperm by mimicking the in vivo process. These technologies show promise for near-term advances in both understanding male infertility and clinical implementation

  • Translation of microfluidic technologies for male infertility into the consumer market and clinical practices has been slow. A combination of multidisciplinary collaborations and market opportunity will speed up this process

Abstract

Infertility is a growing global health issue with far-reaching socioeconomic implications. A downward trend in male fertility highlights the acute need for affordable and accessible diagnosis and treatment. Assisted reproductive technologies are effective in treating male infertility, but their success rate has plateaued at 33% per cycle. Many emerging opportunities exist for microfluidics — a mature technology in other biomedical areas — in male infertility diagnosis and treatment, and promising microfluidic approaches are under investigation for addressing male infertility. Microfluidic approaches can improve our fundamental understanding of sperm motion, and developments in microfluidic devices that use microfabrication and sperm behaviour can aid semen analysis and sperm selection. Many burgeoning possibilities exist for engineers, biologists, and clinicians to improve current practices for infertility diagnosis and treatment. The most promising avenues have the potential to improve medical practice, moving innovations from research laboratories to clinics and patients in the near future.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Male infertility and assisted reproduction globally.
Figure 2: Sperm locomotion.
Figure 3: Sperm motion near surfaces.
Figure 4: Sperm motion mediated by viscosity and rheotaxis.
Figure 5: Sperm chemotaxis.
Figure 6: Microfluidics for semen analysis.
Figure 7: Microfluidics for sperm selection.

References

  1. 1

    Bushnik, T., Cook, J. L., Yuzpe, A. A., Tough, S. & Collins, J. Estimating the prevalence of infertility in Canada. Hum. Reprod. 27, 738–746 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Boivin, J., Bunting, L., Collins, J. A. & Nygren, K. G. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum. Reprod. 22, 1506–1512 (2007).

    Article  PubMed  Google Scholar 

  3. 3

    Ombelet, W., Cooke, I., Dyer, S., Serour, G. & Devroey, P. Infertility and the provision of infertility medical services in developing countries. Hum. Reprod. Update 14, 605–621 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Skakkebaek, N. E. et al. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol. Rev. 96, 55–97 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  5. 5

    Joensen, U. N., Skakkebæk, N. E. & Jørgensen, N. Is there a problem with male reproduction? Nat. Clin. Pract. Endocrinol. Metab. 5, 144–145 (2009).

    PubMed  Google Scholar 

  6. 6

    Schultz, R. M. & Williams, C. J. The science of ART. Science 296, 2188–2190 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. 7

    Agarwal, A., Mulgund, A., Hamada, A. & Chyatte, M. R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 13, 37 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Virtanen, H. E., Jørgensen, N. & Toppari, J. Semen quality in the 21 st century. Nat. Rev. Urol. 14, 120–130 (2017).

    Article  PubMed  Google Scholar 

  9. 9

    Lackner, J. et al. Constant decline in sperm concentration in infertile males in an urban population: experience over 18 years. Fertil. Steril. 84, 1657–1661 (2005).

    Article  PubMed  Google Scholar 

  10. 10

    Centola, G. M., Blanchard, A., Demick, J., Li, S. & Eisenberg, M. L. Decline in sperm count and motility in young adult men from 2003 to 2013: observations from a U.S. sperm bank. Andrology 4, 270–276 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Geoffroy-Siraudin, C. et al. Decline of semen quality among 10 932 males consulting for couple infertility over a 20-year period in Marseille, France. Asian J. Androl. 14, 584–590 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Storgaard, L., Bonde, J. P. & Olsen, J. Male reproductive disorders in humans and prenatal indicators of estrogen exposure. Reprod. Toxicol. 21, 4–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Bieniek, J. M. et al. Influence of increasing body mass index on semen and reproductive hormonal parameters in a multi-institutional cohort of subfertile men. Fertil. Steril. 106, 1070–1075 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Du Plessis, S. S., Cabler, S., McAlister, D. A., Sabanegh, E. & Agarwal, A. The effect of obesity on sperm disorders and male infertility. Nat. Rev. Urol. 7, 153–161 (2010).

    Article  PubMed  Google Scholar 

  15. 15

    Gimenes, F. et al. Male infertility: a public health issue caused by sexually transmitted pathogens. Nat. Rev. Urol. 11, 672–687 (2014).

    Article  PubMed  Google Scholar 

  16. 16

    Matzuk, M. M. & Lamb, D. J. The biology of infertility: research advances and clinical challenges. Nat. Med. 14, 1197–1213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    WHO. WHO Laboratory Manual for the Examination and Processing of Human Semen 5 th edn (WHO Press, 2010).

  18. 18

    Agarwal, A. & Said, T. M. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum. Reprod. Update 9, 331–345 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Hamilton, J. A. M. et al. Total motile sperm count: a better indicator for the severity of male factor infertility than the WHO sperm classification system. Hum. Reprod. 30, 1110–1121 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Samplaski, M. K. et al. The relationship between sperm viability and DNA fragmentation rates. Reprod. Biol. Endocrinol. 13, 42 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Franken, D. R. & Oehninger, S. Semen analysis and sperm function testing. Asian J. Androl. 14, 6–13 (2012).

    Article  PubMed  Google Scholar 

  22. 22

    Kime, D. E. et al. Computer-assisted sperm analysis (CASA) as a tool for monitoring sperm quality in fish. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 130, 425–433 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. 23

    Vasan, S. S. Semen analysis and sperm function tests: how much to test? Indian J. Urol. 27, 41–48 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Cooper, T. G. et al. World Health Organization reference values for human semen characteristics. Hum. Reprod. Update 16, 231–245 (2010).

    Article  PubMed  Google Scholar 

  25. 25

    Kime, D. E. et al. Use of computer assisted sperm analysis (CASA) for monitoring the effects of pollution on sperm quality of fish; application to the effects of heavy metals. Aquat. Toxicol. 36, 223–237 (1996).

    Article  CAS  Google Scholar 

  26. 26

    Pérez-Cerezales, S., Miranda, A. & Gutiérrez-Adán, A. Comparison of four methods to evaluate sperm DNA integrity between mouse caput and cauda epididymidis. Asian J. Androl. 14, 335–337 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Bungum, M. et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum. Reprod. 22, 174–179 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Brezina, P. R., Haberl, E. & Wallach, E. At home testing: optimizing management for the infertility physician. Fertil. Steril. 95, 1867–1878 (2011).

    Article  PubMed  Google Scholar 

  29. 29

    De Jonge, C. Semen analysis: looking for an upgrade in class. Fertil. Steril. 97, 260–266 (2012).

    Article  PubMed  Google Scholar 

  30. 30

    Kovac, J., Smith, R., Cajipe, M., Lamb, D. & Lipshultz, L. Men with a complete absence of normal sperm morphology exhibit high rates of success without assisted reproduction. Asian J. Androl. 19, 39–42 (2016).

    PubMed Central  Google Scholar 

  31. 31

    Carmeli, Y. S. & Birenbaum-Carmeli, D. The predicament of masculinity: towards understanding the male's experience of infertility treatments. Sex. Roles 30, 663–677 (1994).

    Article  Google Scholar 

  32. 32

    Inhorn, M. C. Masturbation, semen collection and men's IVF experiences: anxieties in the muslim world. Body Soc. 13, 37–53 (2007).

    Article  Google Scholar 

  33. 33

    Maatman, T. J., Aldrin, L. & Carothers, G. G. Patient noncompliance after vasectomy. Fertil. Steril. 68, 552–555 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Oehninger, S. Clinical and laboratory management of male infertility: an opinion on its current status. J. Androl. 21, 814–821 (2000).

    CAS  PubMed  Google Scholar 

  35. 35

    Schieve, L. A. et al. Live-birth rates and multiple-birth risk using in vitro fertilization. JAMA 282, 1832–1838 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Fauser, B. C., Devroey, P. & Macklon, N. S. Multiple birth resulting from ovarian stimulation for subfertility treatment. Lancet 365, 1807–1816 (2005).

    Article  PubMed  Google Scholar 

  37. 37

    Gnoth, C. et al. Final ART success rates: a 10 years survey. Hum. Reprod. 26, 2239–2246 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Lemmen, J. G., Rodríguez, N. M., Andreasen, L. D., Loft, A. & Ziebe, S. The total pregnancy potential per oocyte aspiration after assisted reproduction — in how many cycles are biologically competent oocytes available? J. Assist. Reprod. Genet. 33, 849–854 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Malizia, B. A., Hacker, M. R. & Penzias, A. S. Cumulative live-birth rates after in vitro fertilization. N. Engl. J. Med. 360, 236–243 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Dyer, S. et al. International Committee for Monitoring Assisted Reproductive Technologies world report: assisted reproductive technology 2008, 2009 and 2010. Hum. Reprod. 31, 1588–1609 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Zini, A. et al. Prevalence of abnormal sperm DNA denaturation in fertile and infertile men. Urology 60, 1069–1072 (2002).

    Article  PubMed  Google Scholar 

  42. 42

    Said, T. M. & Land, J. A. Effects of advanced selection methods on sperm quality and ART outcome: a systematic review. Hum. Reprod. Update 17, 719–733 (2011).

    Article  PubMed  Google Scholar 

  43. 43

    Davies, M. J. et al. Reproductive technologies and the risk of birth defects. N. Engl. J. Med. 366, 1803–1813 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Jackson, R. E. et al. Effects of semen storage and separation techniques on sperm DNA fragmentation. Fertil. Steril. 94, 2626–2630 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Belva, F. et al. Semen quality of young adult ICSI offspring: the first results. Hum. Reprod. 31, 2811–2820 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Zhu, L. et al. Maternal and live-birth outcomes of pregnancies following assisted reproductive technology: a retrospective cohort study. Sci. Rep. 6, 35141 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Nabi, A., Khalili, M. A., Halvaei, I. & Roodbari, F. Prolonged incubation of processed human spermatozoa will increase DNA fragmentation. Andrologia 46, 374–379 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Matsuura, R., Takeuchi, T. & Yoshida, A. Preparation and incubation conditions affect the DNA integrity of ejaculated human spermatozoa. Asian J. Androl. 12, 753–759 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Peer, S. et al. Is fine morphology of the human sperm nuclei affected by in vitro incubation at 37 °C? Fertil. Steril. 88, 1589–1594 (2007).

    Article  PubMed  Google Scholar 

  50. 50

    Sackmann, E. K., Fulton, A. L. & Beebe, D. J. The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. 52

    Beebe, D. J., Mensing, G. A. & Walker, G. M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Yetisen, A. K., Akram, M. S. & Lowe, C. R. Paper-based microfluidic point-of-care diagnostic devices. Lab. Chip 13, 2210–2251 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Martinez, A. W., Phillips, S. T., Whitesides, G. M. & Carrilho, E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82, 3–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. 55

    Koh, J. B. Y. The study of spermatozoa and sorting in relation to human reproduction. Microfluid. Nanofluid. 18, 755–774 (2015).

    Article  CAS  Google Scholar 

  56. 56

    Knowlton, S. M., Sadasivam, M. & Tasoglu, S. Microfluidics for sperm research. Trends Biotechnol. 33, 221–229 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. 57

    Rappa, K. L. et al. Sperm processing for advanced reproductive technologies: where are we today? Biotechnol. Adv. 34, 578–587 (2016).

    Article  PubMed  Google Scholar 

  58. 58

    Suarez, S. S. & Wu, M. Microfluidic devices for the study of sperm migration. Mol. Hum. Reprod. 23, 227–234 (2017).

    CAS  PubMed  Google Scholar 

  59. 59

    Tung, C. et al. Emergence of upstream swimming via a hydrodynamic transition. Phys. Rev. Lett. 114, 108102 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Suarez, S. S. & Pacey, A. A. Sperm transport in the female reproductive tract. Hum. Reprod. Update 12, 23–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 3 (1977).

    Article  Google Scholar 

  62. 62

    Brennen, C. & Winet, H. Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9, 339–398 (1977).

    Article  Google Scholar 

  63. 63

    Lauga, E. & Powers, T. R. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 96601 (2009).

    Article  Google Scholar 

  64. 64

    Lauga, E. Life around the scallop theorem. Soft Matter 7, 3060–3065 (2011).

    Article  CAS  Google Scholar 

  65. 65

    Inaba, K. Sperm flagella: comparative and phylogenetic perspectives of protein components. Mol. Hum. Reprod. 17, 524–538 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Brokaw, C. in Proc. Sec. Int. Symp. Aqua-Biomech. (Caltech, 2003).

    Google Scholar 

  67. 67

    Guerrero, A. et al. Strategies for locating the female gamete: the importance of measuring sperm trajectories in three spatial dimensions. Mol. Hum. Reprod. 17, 511–523 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68

    Lindemann, C. B. & Lesich, K. A. Flagellar and ciliary beating: the proven and the possible. J. Cell Sci. 123, 519–528 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Riedel-Kruse, I. H., Hilfinger, A., Howard, J. & Jülicher, F. How molecular motors shape the flagellar beat. HFSP J. 1, 192–208 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70

    Lin, J., Okada, K., Raytchev, M., Smith, M. C. & Nicastro, D. Structural mechanism of the dynein power stroke. Nat. Cell Biol. 16, 479–485 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Gadêlha, H., Gaffney, E. A., Smith, D. J. & Kirkman-Brown, J. C. Nonlinear instability in flagellar dynamics: a novel modulation mechanism in sperm migration? J. R. Soc. Interface 7, 1689–1697 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  72. 72

    David, G., Serres, C. & Jouannet, P. Kinematics of human spermatozoa. Gamete Res. 4, 83–95 (1981).

    Article  Google Scholar 

  73. 73

    Ishijima, S., Sekiguchi, K. & Hiramoto, Y. Comparative study of the beat patterns of American and Asian horseshoe crab sperm: evidence for a role of the central pair complex in forming planar waveforms in flagella. Cytoskeleton 9, 264–270 (1988).

    Article  Google Scholar 

  74. 74

    Woolley, D. M. & Vernon, G. G. A study of helical and planar waves on sea urchin sperm flagella, with a theory of how they are generated. J. Exp. Biol. 204, 1333–1345 (2001).

    CAS  PubMed  Google Scholar 

  75. 75

    Publicover, S., Harper, C. V. & Barratt, C. [Ca2+]i signalling in sperm—making the most of what you've got. Nat. Cell Biol. 9, 235–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Tamm, S. Ca2+ channels and signalling in cilia and flagella. Trends Cell Biol. 4, 305–310 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. 77

    Gibbons, I. R., Shingyoji, C., Murakami, A. & Takahashi, K. Spontaneous recovery after experimental manipulation of the plane of beat in sperm flagella. Nature 325, 351–352 (1987).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    Woolley, D. M. Flagellar oscillation: a commentary on proposed mechanisms. Biol. Rev. Camb. Philos. Soc. 85, 453–470 (2010).

    PubMed  Google Scholar 

  79. 79

    Phillips, D. M. Comparative analysis of mammalian sperm motility. J. Cell Biol. 53, 561–573 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Rurangwa, E., Kime, D. E., Ollevier, F. & Nash, J. P. The measurement of sperm motility and factors affecting sperm quality in cultured fish. Aquaculture 234, 1–28 (2004).

    Article  Google Scholar 

  81. 81

    Mortimer, S. T. CASA — practical aspects. J. Androl. 21, 515–524 (2000).

    CAS  PubMed  Google Scholar 

  82. 82

    Amann, R. P. & Waberski, D. Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology 81, 5–17.e3 (2014).

    Article  PubMed  Google Scholar 

  83. 83

    Yu, X., Hong, J., Liu, C. & Kim, M. K. Review of digital holographic microscopy for three-dimensional profiling and tracking. Opt. Eng. 53, 112306 (2014).

    Article  Google Scholar 

  84. 84

    Di Caprio, G. et al. Holographic imaging of unlabelled sperm cells for semen analysis: a review. J. Biophotonics 8, 779–789 (2015).

    Article  PubMed  Google Scholar 

  85. 85

    Ozcan, A. & Mcleod, E. Lensless imaging and sensing. Annu. Rev. Biomed. Eng. 18, 77–102 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    McLeod, E. & Ozcan, A. Unconventional methods of imaging: computational microscopy and compact implementations. Rep. Prog. Phys. 79, 76001 (2016).

    Article  CAS  Google Scholar 

  87. 87

    Greenbaum, A. et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat. Methods 9, 889–895 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Su, T.-W., Xue, L. & Ozcan, A. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc. Natl Acad. Sci. USA 109, 16018–16022 (2012).

    Article  PubMed  Google Scholar 

  89. 89

    Su, T.-W. et al. Sperm trajectories form chiral ribbons. Sci. Rep. 3, 1664 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Merola, F. et al. Digital holography as a method for 3D imaging and estimating the biovolume of motile cells. Lab Chip 13, 4512–4516 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. 91

    Di Caprio, G. et al. Quantitative label-free animal sperm imaging by means of digital holographic microscopy. IEEE J. Sel. Top. Quantum Electron. 16, 833–840 (2010).

    Article  CAS  Google Scholar 

  92. 92

    Berke, A., Turner, L., Berg, H. & Lauga, E. Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101, 38102 (2008).

    Article  CAS  Google Scholar 

  93. 93

    Rothschild, L. Non-random distribution of bull spermatozoa in a drop of sperm suspension. Nature 198, 1221–1222 (1963).

    Article  Google Scholar 

  94. 94

    Fauci, L. J. & McDonald, A. Sperm motility in the presence of boundaries. Bull. Math. Biol. 57, 679–699 (1995).

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Drescher, K., Dunkel, J., Cisneros, L. H., Ganguly, S. & Goldstein, R. E. Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering. Proc. Natl Acad. Sci. USA 108, 10940–10945 (2011).

    Article  PubMed  Google Scholar 

  96. 96

    Elgeti, J., Kaupp, U. B. & Gompper, G. Hydrodynamics of sperm cells near surfaces. Biophys. J. 99, 1018–1026 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Woolley, D. M. Motility of spermatozoa at surfaces. Reproduction 126, 259–270 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. 98

    Smith, D. J. & Blake, J. R. Surface accumulation of spermatozoa: a fluid dynamic phenomenon. Math. Sci. 34, 74–87 (2009).

    Google Scholar 

  99. 99

    Smith, D. J., Gaffney, E. A., Blake, J. R. & Kirkman-Brown, J. C. Human sperm accumulation near surfaces: a simulation study. J. Fluid Mech. 621, 289–320 (2009).

    Article  Google Scholar 

  100. 100

    Smith, D. J., Gaffney, E. A., Gadelha, H., Kapur, N. & Kirkman-Brown, J. C. Bend propagation in the flagella of migrating human sperm, and its modulation by viscosity. Cell. Motil. Cytoskeleton 66, 220–236 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. 101

    Katz, D. F., Blake, J. R. & Paveri-Fontana, S. L. On the movement of slender bodies near plane boundaries at low Reynolds number. J. Fluid Mech. 72, 529–540 (1975).

    Article  Google Scholar 

  102. 102

    Cosson, J., Huitorel, P. & Gagnon, C. How spermatozoa come to be confined to surfaces. Cell. Motil. Cytoskeleton 54, 56–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. 103

    Shum, H., Gaffney, E. A. & Smith, D. J. Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry. Proc. R. Soc. London Ser. A. 466, 1725–1748 (2010).

    Article  Google Scholar 

  104. 104

    Smith, D. J. et al. Comment on the article by J. Elgeti, U. B. Kaupp, and G. Gampper: hydrodynamics of sperm cells near surfaces. Biophys. J. 100, 2318–2320 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Friedrich, B. M., Riedel-Kruse, I. H., Howard, J. & Jülicher, F. High-precision tracking of sperm swimming fine structure provides strong test of resistive force theory. J. Exp. Biol. 213, 1226–1234 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. 106

    Elgeti, J., Winkler, R. G. & Gompper, G. Physics of microswimmers — single particle motion and collective behavior: a review. Rep. Prog. Phys. 78, 56601 (2015).

    Article  CAS  Google Scholar 

  107. 107

    Lauga, E. Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48, 105–130 (2016).

    Article  Google Scholar 

  108. 108

    Elgeti, J., Benjaminkaupp, U. & Gompper, G. Response to comment on article: hydrodynamics of sperm cells near surfaces. Biophys. J. 100, 2321–2324 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  109. 109

    Winet, H., Bernstein, G. S. & Head, J. Observations on the response of human spermatozoa to gravity, boundaries and fluid shear. J. Reprod. Fertil. 70, 511–523 (1984).

    Article  CAS  PubMed  Google Scholar 

  110. 110

    Nosrati, R., Driouchi, A., Yip, C. M. & Sinton, D. Two-dimensional slither swimming of sperm within a micrometre of a surface. Nat. Commun. 6, 8703 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Stone, L. Basic research: just keep swimming — sperm exhibit a 2D slither motion. Nat. Rev. Urol. 13, 2–3 (2015).

    Article  PubMed  Google Scholar 

  112. 112

    Ishimoto, K., Gadêlha, H., Gaffney, E. A., Smith, D. J. & Kirkman-Brown, J. Coarse-graining the fluid flow around a human sperm. Phys. Rev. Lett. 118, 124501 (2017).

    Article  PubMed  Google Scholar 

  113. 113

    Yang, Y., Elgeti, J. & Gompper, G. Cooperation of sperm in two dimensions: synchronization, attraction, and aggregation through hydrodynamic interactions. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78, 61903 (2008).

    Article  CAS  Google Scholar 

  114. 114

    Woolley, D. M., Crockett, R. F., Groom, W. D. I. & Revell, S. G. A study of synchronisation between the flagella of bull spermatozoa, with related observations. J. Exp. Biol. 212, 2215–2223 (2009).

    Article  PubMed  Google Scholar 

  115. 115

    Elfring, G. J., Pak, O. S. & Lauga, E. Two-dimensional flagellar synchronization in viscoelastic fluids. J. Fluid Mech. 646, 505–515 (2009).

    Article  Google Scholar 

  116. 116

    Brumley, D. R., Wan, K. Y., Polin, M. & Goldstein, R. E. Flagellar synchronization through direct hydrodynamic interactions. eLife 3, e02750 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. 117

    Elfring, G. J. & Lauga, E. Synchronization of flexible sheets. J. Fluid Mech. 674, 163–173 (2011).

    Article  Google Scholar 

  118. 118

    Taylor, G. Analysis of the swimming of microscopic organisms. Proc. R. Soc. London Ser. A 209, 447–461 (1951).

    Article  Google Scholar 

  119. 119

    Riedel, I. H., Kruse, K. & Howard, J. A self-organized vortex array of hydrodynamically entrained sperm cells. Science 309, 300–303 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. 120

    Denissenko, P., Kantsler, V., Smith, D. J. & Kirkman-Brown, J. Human spermatozoa migration in microchannels reveals boundary-following navigation. Proc. Natl Acad. Sci. USA 109, 8007–8010 (2012).

    Article  PubMed  Google Scholar 

  121. 121

    Kantsler, V., Dunkel, J., Polin, M. & Goldstein, R. E. Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Proc. Natl Acad. Sci. USA 110, 1187–1192 (2013).

    Article  PubMed  Google Scholar 

  122. 122

    Shum, H. & Gaffney, E. A. Hydrodynamic analysis of flagellated bacteria swimming in corners of rectangular channels. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92, 63016 (2015).

    Article  CAS  Google Scholar 

  123. 123

    Nosrati, R., Graham, P. J., Liu, Q. & Sinton, D. Predominance of sperm motion in corners. Sci. Rep. 6, 26669 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Magdanz, V., Koch, B., Sanchez, S. & Schmidt, O. G. Sperm dynamics in tubular confinement. Small 11, 781–785 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. 125

    Suarez, S. S. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res. 363, 185–194 (2016).

    Article  PubMed  Google Scholar 

  126. 126

    Ferraz, M. A. M. M., Henning, H. H. W., Stout, T. A. E., Vos, P. L. A. M. & Gadella, B. M. Designing 3-dimensional in vitro oviduct culture systems to study mammalian fertilization and embryo production. Ann. Biomed. Eng. 45, 1731–1744 (2017).

    Article  PubMed  Google Scholar 

  127. 127

    Miki, K. & Clapham, D. E. Rheotaxis guides Mammalian sperm. Curr. Biol. 23, 443–452 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Lai, D., Takayama, S. & Smith, G. D. Recent microfluidic devices for studying gamete and embryo biomechanics. J. Biomech. 48, 1671–1678 (2015).

    Article  PubMed  Google Scholar 

  129. 129

    Eisenbach, M. & Giojalas, L. C. Sperm guidance in mammals – an unpaved road to the egg. Nat. Rev. Mol. Cell Biol. 7, 276–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. 130

    Kirkman-Brown, J. C. & Smith, D. J. Sperm motility: is viscosity fundamental to progress? Mol. Hum. Reprod. 17, 539–544 (2011).

    Article  PubMed  Google Scholar 

  131. 131

    Teran, J., Fauci, L. & Shelley, M. Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Phys. Rev. Lett. 104, 38101 (2010).

    Article  CAS  Google Scholar 

  132. 132

    Fu, H. C., Wolgemuth, C. W. & Powers, T. R. Swimming speeds of filaments in nonlinearly viscoelastic fluids. Phys. Fluids 21, 33102 (2009).

    Article  CAS  Google Scholar 

  133. 133

    Lauga, E. Propulsion in a viscoelastic fluid. Phys. Fluids 19, 83104 (2007).

    Article  CAS  Google Scholar 

  134. 134

    Jansen, R. Fallopian tube isthmic mucus and ovum transport. Science 201, 349–351 (1978).

    Article  CAS  PubMed  Google Scholar 

  135. 135

    Bretherton, F. P. & Rothschild . Rheotaxis of spermatozoa. Proc. R. Soc. B Biol. Sci. 153, 490–502 (1961).

    Article  Google Scholar 

  136. 136

    Ishimoto, K. & Gaffney, E. A. Fluid flow and sperm guidance: a simulation study of hydrodynamic sperm rheotaxis. J. R. Soc. Interface 12, 20150172 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. 137

    Zhang, Z. et al. Human sperm rheotaxis: a passive physical process. Sci. Rep. 6, 23553 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Kantsler, V., Dunkel, J., Blayney, M. & Goldstein, R. E. Rheotaxis facilitates upstream navigation of mammalian sperm cells. eLife 3, e02403 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  139. 139

    El-Sherry, T. M., Elsayed, M., Abdelhafez, H. K. & Abdelgawad, M. Characterization of rheotaxis of bull sperm using microfluidics. Integr. Biol. (Camb.) 6, 1111–1121 (2014).

    Article  Google Scholar 

  140. 140

    Tung, C.-K., Ardon, F., Fiore, A. G., Suarez, S. S. & Wu, M. Cooperative roles of biological flow and surface topography in guiding sperm migration revealed by a microfluidic model. Lab Chip 14, 1348–1356 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Tung, C.-K. et al. Microgrooves and fluid flows provide preferential passageways for sperm over pathogen Tritrichomonas foetus. Proc. Natl Acad. Sci. USA 112, 5431–5436 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. 142

    Bukatin, A., Kukhtevich, I., Stoop, N., Dunkel, J. & Kantsler, V. Bimodal rheotactic behavior reflects flagellar beat asymmetry in human sperm cells. Proc. Natl Acad. Sci. USA 112, 15904–15909 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. 143

    Cohen-Dayag, A., Tur-Kaspa, I., Dor, J., Mashiach, S. & Eisenbach, M. Sperm capacitation in humans is transient and correlates with chemotactic responsiveness to follicular factors. Proc. Natl Acad. Sci. USA 92, 11039–11043 (1995).

    Article  CAS  PubMed  Google Scholar 

  144. 144

    Eisenbach, M. Sperm chemotaxis. Rev. Reprod. 4, 56–66 (1999).

    Article  CAS  PubMed  Google Scholar 

  145. 145

    Alvarez, L., Friedrich, B. M., Gompper, G. & Kaupp, U. B. The computational sperm cell. Trends Cell Biol. 24, 198–207 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. 146

    Kaupp, U. B. et al. The signal flow and motor response controling chemotaxis of sea urchin sperm. Nat. Cell Biol. 5, 109–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. 147

    Kirkman-Brown, J. C., Sutton, K. A. & Florman, H. M. How to attract a sperm. Nat. Cell Biol. 5, 93–96 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. 148

    Jikeli, J. F. et al. Sperm navigation along helical paths in 3D chemoattractant landscapes. Nat. Commun. 6, 7985 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Friedrich, B. M. & Jülicher, F. Chemotaxis of sperm cells. Proc. Natl Acad. Sci. USA 104, 13256–13261 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. 150

    Hussain, Y. H., Guasto, J. S., Zimmer, R. K., Stocker, R. & Riffell, J. A. Sperm chemotaxis promotes individual fertilization success in sea urchins. J. Exp. Biol. 219, 1458–1466 (2016).

    Article  PubMed  Google Scholar 

  151. 151

    Koyama, S., Amarie, D., Soini, H. A., Novotny, M. V. & Jacobson, S. C. Chemotaxis assays of mouse sperm on microfluidic devices. Anal. Chem. 78, 3354–3359 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. 152

    Xie, L. et al. Integration of sperm motility and chemotaxis screening with a microchannel-based device. Clin. Chem. 56, 1270–1278 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. 153

    Chang, H., Kim, B. J., Kim, Y. S., Suarez, S. S. & Wu, M. Different migration patterns of sea urchin and mouse sperm revealed by a microfluidic chemotaxis device. PLoS ONE 8, e60587 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. 154

    Kim, B. J. & Wu, M. Microfluidics for mammalian cell chemotaxis. Ann. Biomed. Eng. 40, 1316–1327 (2012).

    Article  PubMed  Google Scholar 

  155. 155

    Haessler, U., Kalinin, Y., Swartz, M. A. & Wu, M. An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies. Biomed. Microdevices 11, 827–835 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. 156

    Haessler, U., Pisano, M., Wu, M. & Swartz, M. A. Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19. Proc. Natl Acad. Sci. USA 108, 5614–5619 (2011).

    Article  PubMed  Google Scholar 

  157. 157

    Lishko, P. V., Botchkina, I. L. & Kirichok, Y. Progesterone activates the principal Ca2+ channel of human sperm. Nature 471, 387–391 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. 158

    Zhang, Y. et al. Generation of gradients on a microfluidic device: toward a high-throughput investigation of spermatozoa chemotaxis. PLoS ONE 10, e0142555 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. 159

    Centola, G. M. Semen assessment. Urol. Clin. North Am. 41, 163–167 (2014).

    Article  PubMed  Google Scholar 

  160. 160

    Rothmann, S. A. & Reese, A. A. in Infertility in the Male (eds Niederberger, C. S., Lipshultz, L. I. & Howards, S. S.) 550–573 (Cambridge Univ. Press, 2009).

    Google Scholar 

  161. 161

    Frimat, J.-P. et al. Make it spin: individual trapping of sperm for analysis and recovery using micro-contact printing. Lab Chip 14, 2635–2641 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. 162

    Chen, C.-Y. et al. Sperm quality assessment via separation and sedimentation in a microfluidic device. Analyst 138, 4967–4974 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. 163

    McCormack, M. C., McCallum, S. & Behr, B. A novel microfluidic device for male subfertility screening. J. Urol. 175, 2223–2227 (2006).

    Article  PubMed  Google Scholar 

  164. 164

    Chen, Y.-A. et al. Direct characterization of motion-dependent parameters of sperm in a microfluidic device: proof of principle. Clin. Chem. 59, 493–501 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. 165

    Chen, Y.-A. et al. Analysis of sperm concentration and motility in a microfluidic device. Microfluid. Nanofluid. 10, 59–67 (2011).

    Article  Google Scholar 

  166. 166

    Segerink, L. I., Sprenkels, A. J., ter Braak, P. M., Vermes, I. & van den Berg, A. On-chip determination of spermatozoa concentration using electrical impedance measurements. Lab Chip 10, 1018–1024 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. 167

    de Wagenaar, B. et al. Spermometer: electrical characterization of single boar sperm motility. Fertil. Steril. 106, 773–780.e6 (2016).

    Article  PubMed  Google Scholar 

  168. 168

    Elsayed, M., El-Sherry, T. M. & Abdelgawad, M. Development of computer-assisted sperm analysis plugin for analyzing sperm motion in microfluidic environments using Image-J. Theriogenology 84, 1367–1377 (2015).

    Article  PubMed  Google Scholar 

  169. 169

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. 170

    Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. 171

    Karabacak, N. M. et al. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat. Protoc. 9, 694–710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. 172

    Chen, Y. et al. Rare cell isolation and analysis in microfluidics. Lab Chip 14, 626–645 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. 173

    Kanakasabapathy, M. K. et al. An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci. Transl Med. 9, eaai7863 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. 174

    Chin, C. D. et al. Mobile device for disease diagnosis and data tracking in resource-limited settings. Clin. Chem. 59, 629–640 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. 175

    Wei, Q. et al. Imaging and sizing of single DNA molecules on a mobile phone. ACS Nano 8, 12725–12733 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. 176

    Klotz, K. L. et al. Clinical and consumer trial performance of a sensitive immunodiagnostic home test that qualitatively detects low concentrations of sperm following vasectomy. J. Urol. 180, 2569–2576 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  177. 177

    Coppola, M. A. et al. SpermCheck Fertility, an immunodiagnostic home test that detects normozoospermia and severe oligozoospermia. Hum. Reprod. 25, 853–861 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. 178

    Milkin, T. OTC product: Fertell. J. Am. Pharm. Assoc. (2003) 47, e16–e17 (2007).

    Article  Google Scholar 

  179. 179

    Björndahl, L., Kirkman-Brown, J., Hart, G., Rattle, S. & Barratt, C. L. R. Development of a novel home sperm test. Hum. Reprod. 21, 145–149 (2006).

    Article  PubMed  Google Scholar 

  180. 180

    Matsuura, K. et al. Paper-based diagnostic devices for evaluating the quality of human sperm. Microfluid. Nanofluid. 16, 857–867 (2014).

    Article  CAS  Google Scholar 

  181. 181

    Matsuura, K., Huang, H.-W., Chen, M.-C., Chen, Y. & Cheng, C.-M. Relationship between porcine sperm motility and sperm enzymatic activity using paper-based devices. Sci. Rep. 7, 46213 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. 182

    Ruiz-Pesini, E. et al. Correlation of sperm motility with mitochondrial enzymatic activities. Clin. Chem. 44, 1616–1620 (1998).

    CAS  PubMed  Google Scholar 

  183. 183

    Nosrati, R. et al. Paper-based quantification of male fertility potential. Clin. Chem. 62, 458–465 (2016).

    Article  CAS  PubMed  Google Scholar 

  184. 184

    Guo, T. W., Nayak, S. & Sia, S. K. Toward a microfluidics-based home male fertility test. Clin. Chem. 62, 421–422 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. 185

    Gong, M. M., Nosrati, R., San Gabriel, M. C., Zini, A. & Sinton, D. Direct DNA analysis with paper-based ion concentration polarization. J. Am. Chem. Soc. 137, 13913–13919 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. 186

    Nosrati, R., Gong, M. M., San Gabriel, M. C., Zini, A. & Sinton, D. Paper-based sperm DNA integrity analysis. Anal. Methods 8, 6260–6264 (2016).

    Article  CAS  Google Scholar 

  187. 187

    Boulet, S. L. et al. Assisted reproductive technology and birth defects among liveborn infants in Florida, Massachusetts, and Michigan, 2000–2010. JAMA Pediatr. 170, e154934 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  188. 188

    Beydola, T., Sharma, R. K. & Agarwal, A. in Medical and Surgical Management of Male Infertility (eds Botros RMB, R., Nabil, A., Ashok, A. & Sabanegh, J. E.) 244–251 (Jaypee Brothers Med. Publ., 2014).

    Google Scholar 

  189. 189

    Sakkas, D. Novel technologies for selecting the best sperm for in vitro fertilization and intracytoplasmic sperm injection. Fertil. Steril. 99, 1023–1029 (2013).

    Article  PubMed  Google Scholar 

  190. 190

    Sakkas, D., Pool, T. B. & Barrett, C. B. Analyzing IVF laboratory error rates: highlight or hide? Reprod. Biomed. Online 31, 447–448 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. 191

    Intra, G. et al. Application of failure mode and effect analysis in an assisted reproduction technology laboratory. Reprod. Biomed. Online 33, 132–139 (2016).

    Article  PubMed  Google Scholar 

  192. 192

    Gaffney, E. A., Gadêlha, H., Smith, D. J., Blake, J. R. & Kirkman-Brown, J. C. Mammalian sperm motility: observation and theory. Annu. Rev. Fluid Mech. 43, 501–528 (2011).

    Article  Google Scholar 

  193. 193

    Fauci, L. J. & Dillon, R. Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech. 38, 371–394 (2006).

    Article  Google Scholar 

  194. 194

    Lai, D., Chiu, J. H.-C., Smith, G. D. & Takayama, S. in Microfluidics for Medical Applications (eds van den Berg, A. & Segernik, L.) 131–150 (R. Soc. Chem., 2015).

    Google Scholar 

  195. 195

    Lai, D., Smith, G. D. & Takayama, S. Lab-on-a-chip biophotonics: its application to assisted reproductive technologies. J. Biophotonics 660, 650–660 (2012).

    Article  CAS  Google Scholar 

  196. 196

    Cho, B. S. et al. Passively driven integrated microfluidic system for separation of motile sperm. Anal. Chem. 75, 1671–1675 (2003).

    Article  CAS  PubMed  Google Scholar 

  197. 197

    Schuster, T. G., Cho, B., Keller, L. M., Takayama, S. & Smith, G. D. Isolation of motile spermatozoa from semen samples using microfluidics. Reprod. Biomed. Online 7, 75–81 (2003).

    Article  PubMed  Google Scholar 

  198. 198

    Shirota, K. et al. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertil. Steril. 105, 315–321.e1 (2016).

    Article  CAS  PubMed  Google Scholar 

  199. 199

    Seo, D., Agca, Y., Feng, Z. C. & Critser, J. K. Development of sorting, aligning, and orienting motile sperm using microfluidic device operated by hydrostatic pressure. Microfluid. Nanofluid. 3, 561–570 (2007).

    Article  Google Scholar 

  200. 200

    Wu, J.-K. et al. High-throughput flowing upstream sperm sorting in a retarding flow field for human semen analysis. Analyst 142, 938–944 (2017).

    Article  CAS  PubMed  Google Scholar 

  201. 201

    Ma, R. et al. In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development. Anal. Chem. 83, 2964–2970 (2011).

    Article  CAS  PubMed  Google Scholar 

  202. 202

    Ainsworth, C., Nixon, B. & Aitken, R. J. Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum. Reprod. 20, 2261–2270 (2005).

    Article  CAS  PubMed  Google Scholar 

  203. 203

    Rosales-Cruzaley, E., Cota-Elizondo, P. A., Sánchez, D. & Lapizco-Encinas, B. H. Sperm cells manipulation employing dielectrophoresis. Bioprocess Biosyst. Eng. 36, 1353–1362 (2013).

    Article  CAS  PubMed  Google Scholar 

  204. 204

    de Wagenaar, B. et al. Towards microfluidic sperm refinement: impedance-based analysis and sorting of sperm cells. Lab Chip 16, 1514–1522 (2016).

    Article  CAS  PubMed  Google Scholar 

  205. 205

    de Wagenaar, B. et al. Microfluidic single sperm entrapment and analysis. Lab Chip 15, 1294–1301 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. 206

    Ohta, A. T. et al. Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers. Lab Chip 10, 3213–3217 (2010).

    Article  CAS  PubMed  Google Scholar 

  207. 207

    Garcia, M. M. et al. A noninvasive, motility independent, sperm sorting method and technology to identify and retrieve individual viable nonmotile sperm for intracytoplasmic sperm injection. J. Urol. 184, 2466–2472 (2010).

    Article  PubMed  Google Scholar 

  208. 208

    Chiu, D. T. et al. Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem 2, 201–223 (2017).

    Article  CAS  Google Scholar 

  209. 209

    Medina-Sánchez, M., Schwarz, L., Meyer, A. K., Hebenstreit, F. & Schmidt, O. G. Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Lett. 16, 555–561 (2016).

    Article  CAS  PubMed  Google Scholar 

  210. 210

    Tasoglu, S. et al. Exhaustion of racing sperm in nature-mimicking microfluidic channels during sorting. Small 9, 3374–3384 (2013).

    Article  CAS  PubMed  Google Scholar 

  211. 211

    Nosrati, R. et al. Rapid selection of sperm with high DNA integrity. Lab Chip 14, 1142–1150 (2014).

    Article  CAS  PubMed  Google Scholar 

  212. 212

    Eamer, L., Nosrati, R., Vollmer, M., Zini, A. & Sinton, D. Microfluidic assessment of swimming media for motility-based sperm selection. Biomicrofluidics 9, 44113 (2015).

    Article  CAS  Google Scholar 

  213. 213

    Galajda, P., Keymer, J., Chaikin, P. & Austin, R. A wall of funnels concentrates swimming bacteria. J. Bacteriol. 189, 8704–8707 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. 214

    Elizabeth Hulme, S. et al. Using ratchets and sorters to fractionate motile cells of Escherichia coli by length. Lab Chip 8, 1888–1895 (2008).

    Article  CAS  PubMed  Google Scholar 

  215. 215

    Guidobaldi, A. et al. Geometrical guidance and trapping transition of human sperm cells. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89, 32720 (2014).

    Article  CAS  Google Scholar 

  216. 216

    Guidobaldi, H. A. et al. Disrupting the wall accumulation of human sperm cells by artificial corrugation. Biomicrofluidics 9, 24122 (2015).

    Article  CAS  Google Scholar 

  217. 217

    Eamer, L. et al. Turning the corner in fertility: high DNA integrity of boundary-following sperm. Lab Chip 16, 2418–2422 (2016).

    Article  CAS  PubMed  Google Scholar 

  218. 218

    DiLuzio, W. R. et al. Escherichia coli swim on the right-hand side. Nature 435, 1271–1274 (2005).

    Article  CAS  PubMed  Google Scholar 

  219. 219

    Zhang, X. et al. Lensless imaging for simultaneous microfluidic sperm monitoring and sorting. Lab Chip 11, 2535–2540 (2011).

    Article  CAS  PubMed  Google Scholar 

  220. 220

    Asghar, W. et al. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Adv. Healthc. Mater. 3, 1671–1679 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. 221

    Hauser, R. et al. Virtual azoospermia and cryptozoospermia — fresh/frozen testicular or ejaculate sperm for better IVF outcome? J. Androl. 32, 484–490 (2011).

    Article  PubMed  Google Scholar 

  222. 222

    Kilchevsky, A. & Honig, S. Male factor infertility in 2011: semen quality, sperm selection and hematospermia. Nat. Rev. Urol. 9, 68–70 (2012).

    Article  PubMed  Google Scholar 

  223. 223

    Volpatti, L. R. & Yetisen, A. K. Commercialization of microfluidic devices. Trends Biotechnol. 32, 347–350 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. 224

    Berthier, E., Young, E. W. K. & Beebe, D. Engineers are from PDMS-land, biologists are from Polystyrenia. Lab Chip 12, 1224–1237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. 225

    Xiao, S. et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat. Commun. 8, 14584 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. 226

    Ferraz, M. A. M. M. et al. Improved bovine embryo production in an oviduct-on-a-chip system: prevention of poly-spermic fertilization and parthenogenic activation. Lab Chip 17, 905–916 (2017).

    Article  CAS  PubMed  Google Scholar 

  227. 227

    Drabovich, A. P., Jarvi, K. & Diamandis, E. P. Verification of male infertility biomarkers in seminal plasma by multiplex selected reaction monitoring assay. Mol. Cell. Proteomics 10, http://dx.doi.org/10.1074/mcp.M110.004127 (2011).

  228. 228

    Drabovich, A. P. et al. Differential diagnosis of azoospermia with proteomic biomarkers ECM1 and TEX101 quantified in seminal plasma proteomic biomarkers ECM1 and TEX101 quantified in seminal plasma. Sci. Transl Med. 5, 212ra160 (2013).

    Article  CAS  PubMed  Google Scholar 

  229. 229

    Drabovich, A. P., Saraon, P., Jarvi, K. & Diamandis, E. P. Seminal plasma as a diagnostic fluid for male reproductive system disorders. Nat. Rev. Urol. 11, 278–288 (2014).

    Article  CAS  PubMed  Google Scholar 

  230. 230

    Hong, Y. et al. Systematic characterization of seminal plasma piRNAs as molecular biomarkers for male infertility. Sci. Rep. 6, 24229 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. 231

    Rao, A. R., Motiwala, H. G. & Karim, O. M. The discovery of prostate-specific antigen. BJU Int. 101, 5–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  232. 232

    Turek, P. J. Practical approaches to the diagnosis and management of male infertility. Nat. Clin. Pract. Urol. 2, 226–238 (2005).

    Article  PubMed  Google Scholar 

  233. 233

    Coughlan, C. & Ledger, W. L. In-vitro fertilisation. Obstet. Gynaecol. Reprod. Med. 18, 300–306 (2008).

    Article  Google Scholar 

  234. 234

    Palermo, G., Joris, H., Devroey, P. & Van Steirteghem, A. C. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340, 17–18 (1992).

    Article  CAS  PubMed  Google Scholar 

  235. 235

    Sakkas, D., Ramalingam, M., Garrido, N. & Barratt, C. L. R. Sperm selection in natural conception: what can we learn from mother nature to improve assisted reproduction outcomes? Hum. Reprod. Update 21, 711–726 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. 236

    Gray, J. & Hancock, G. J. The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 32, 802–814 (1955).

    Google Scholar 

  237. 237

    Berg, H. C. in Random Walks in Biology (ed. Berg, H. C.) 75–94 (Princeton Univ. Press, 1983).

    Google Scholar 

  238. 238

    Centers for Disease Control and Prevention. ART success rates. CDC http://www.cdc.gov/art/artdata/index.html (2017).

  239. 239

    The World Bank. World Data Bank. The World Bank http://databank.worldbank.org/data/reports.aspx?source=gender-statistics (2017).

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC I2IPJ469164-14, NSERC RGPIN-2015-06701), Canadian Institutes of Health Research (CIHR 139088), the Ontario Centres of Excellence (169411), and MaRS Innovation. The authors also gratefully acknowledge an NSERC E.W.R. Steacie Memorial Fellowship (DS), the Canada Research Chairs Program (DS), an NSERC postdoctoral fellowship (RN), and a Queen's University postdoctoral fund (RN).

Author information

Affiliations

Authors

Contributions

R.N., P.J.G., B.Z. and J.R. researched data for and wrote the article. All authors made substantial contributions to discussion of content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to David Sinton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information Tables S1–S2 (PDF 727 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nosrati, R., Graham, P., Zhang, B. et al. Microfluidics for sperm analysis and selection. Nat Rev Urol 14, 707–730 (2017). https://doi.org/10.1038/nrurol.2017.175

Download citation

Further reading