Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microfluidics for sperm analysis and selection

Key Points

  • Sperm swim using periodic but time-irreversible and unidirectional flagellar motion. When sperm swim near a boundary, hydrodynamic sperm–wall interactions result in surface accumulation and boundary-following behaviour

  • Microfluidic techniques paired with high-speed imaging have resolved the full 3D swimming patterns of sperm in bulk fluid and revealed a 2D slither swimming mode for sperm near surfaces

  • Microfluidics show promise in studying sperm rheotaxis and chemotaxis. Future research needs to focus on developing high-throughput platforms with single-cell-analysis capabilities to study human sperm chemotaxis

  • Microfluidic technologies are emerging as rapid and low-cost diagnostic alternatives for at-home and clinical male fertility testing, and technologies for additional, automated morphological analysis of sperm are needed

  • Microfluidic platforms enable selection of high-quality sperm by mimicking the in vivo process. These technologies show promise for near-term advances in both understanding male infertility and clinical implementation

  • Translation of microfluidic technologies for male infertility into the consumer market and clinical practices has been slow. A combination of multidisciplinary collaborations and market opportunity will speed up this process

Abstract

Infertility is a growing global health issue with far-reaching socioeconomic implications. A downward trend in male fertility highlights the acute need for affordable and accessible diagnosis and treatment. Assisted reproductive technologies are effective in treating male infertility, but their success rate has plateaued at 33% per cycle. Many emerging opportunities exist for microfluidics — a mature technology in other biomedical areas — in male infertility diagnosis and treatment, and promising microfluidic approaches are under investigation for addressing male infertility. Microfluidic approaches can improve our fundamental understanding of sperm motion, and developments in microfluidic devices that use microfabrication and sperm behaviour can aid semen analysis and sperm selection. Many burgeoning possibilities exist for engineers, biologists, and clinicians to improve current practices for infertility diagnosis and treatment. The most promising avenues have the potential to improve medical practice, moving innovations from research laboratories to clinics and patients in the near future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Male infertility and assisted reproduction globally.
Figure 2: Sperm locomotion.
Figure 3: Sperm motion near surfaces.
Figure 4: Sperm motion mediated by viscosity and rheotaxis.
Figure 5: Sperm chemotaxis.
Figure 6: Microfluidics for semen analysis.
Figure 7: Microfluidics for sperm selection.

Similar content being viewed by others

References

  1. Bushnik, T., Cook, J. L., Yuzpe, A. A., Tough, S. & Collins, J. Estimating the prevalence of infertility in Canada. Hum. Reprod. 27, 738–746 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Boivin, J., Bunting, L., Collins, J. A. & Nygren, K. G. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum. Reprod. 22, 1506–1512 (2007).

    Article  PubMed  Google Scholar 

  3. Ombelet, W., Cooke, I., Dyer, S., Serour, G. & Devroey, P. Infertility and the provision of infertility medical services in developing countries. Hum. Reprod. Update 14, 605–621 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Skakkebaek, N. E. et al. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol. Rev. 96, 55–97 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  5. Joensen, U. N., Skakkebæk, N. E. & Jørgensen, N. Is there a problem with male reproduction? Nat. Clin. Pract. Endocrinol. Metab. 5, 144–145 (2009).

    PubMed  Google Scholar 

  6. Schultz, R. M. & Williams, C. J. The science of ART. Science 296, 2188–2190 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Agarwal, A., Mulgund, A., Hamada, A. & Chyatte, M. R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 13, 37 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Virtanen, H. E., Jørgensen, N. & Toppari, J. Semen quality in the 21 st century. Nat. Rev. Urol. 14, 120–130 (2017).

    Article  PubMed  Google Scholar 

  9. Lackner, J. et al. Constant decline in sperm concentration in infertile males in an urban population: experience over 18 years. Fertil. Steril. 84, 1657–1661 (2005).

    Article  PubMed  Google Scholar 

  10. Centola, G. M., Blanchard, A., Demick, J., Li, S. & Eisenberg, M. L. Decline in sperm count and motility in young adult men from 2003 to 2013: observations from a U.S. sperm bank. Andrology 4, 270–276 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Geoffroy-Siraudin, C. et al. Decline of semen quality among 10 932 males consulting for couple infertility over a 20-year period in Marseille, France. Asian J. Androl. 14, 584–590 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Storgaard, L., Bonde, J. P. & Olsen, J. Male reproductive disorders in humans and prenatal indicators of estrogen exposure. Reprod. Toxicol. 21, 4–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Bieniek, J. M. et al. Influence of increasing body mass index on semen and reproductive hormonal parameters in a multi-institutional cohort of subfertile men. Fertil. Steril. 106, 1070–1075 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Du Plessis, S. S., Cabler, S., McAlister, D. A., Sabanegh, E. & Agarwal, A. The effect of obesity on sperm disorders and male infertility. Nat. Rev. Urol. 7, 153–161 (2010).

    Article  PubMed  Google Scholar 

  15. Gimenes, F. et al. Male infertility: a public health issue caused by sexually transmitted pathogens. Nat. Rev. Urol. 11, 672–687 (2014).

    Article  PubMed  Google Scholar 

  16. Matzuk, M. M. & Lamb, D. J. The biology of infertility: research advances and clinical challenges. Nat. Med. 14, 1197–1213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. WHO. WHO Laboratory Manual for the Examination and Processing of Human Semen 5 th edn (WHO Press, 2010).

  18. Agarwal, A. & Said, T. M. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum. Reprod. Update 9, 331–345 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Hamilton, J. A. M. et al. Total motile sperm count: a better indicator for the severity of male factor infertility than the WHO sperm classification system. Hum. Reprod. 30, 1110–1121 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Samplaski, M. K. et al. The relationship between sperm viability and DNA fragmentation rates. Reprod. Biol. Endocrinol. 13, 42 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Franken, D. R. & Oehninger, S. Semen analysis and sperm function testing. Asian J. Androl. 14, 6–13 (2012).

    Article  PubMed  Google Scholar 

  22. Kime, D. E. et al. Computer-assisted sperm analysis (CASA) as a tool for monitoring sperm quality in fish. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 130, 425–433 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Vasan, S. S. Semen analysis and sperm function tests: how much to test? Indian J. Urol. 27, 41–48 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cooper, T. G. et al. World Health Organization reference values for human semen characteristics. Hum. Reprod. Update 16, 231–245 (2010).

    Article  PubMed  Google Scholar 

  25. Kime, D. E. et al. Use of computer assisted sperm analysis (CASA) for monitoring the effects of pollution on sperm quality of fish; application to the effects of heavy metals. Aquat. Toxicol. 36, 223–237 (1996).

    Article  CAS  Google Scholar 

  26. Pérez-Cerezales, S., Miranda, A. & Gutiérrez-Adán, A. Comparison of four methods to evaluate sperm DNA integrity between mouse caput and cauda epididymidis. Asian J. Androl. 14, 335–337 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Bungum, M. et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum. Reprod. 22, 174–179 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Brezina, P. R., Haberl, E. & Wallach, E. At home testing: optimizing management for the infertility physician. Fertil. Steril. 95, 1867–1878 (2011).

    Article  PubMed  Google Scholar 

  29. De Jonge, C. Semen analysis: looking for an upgrade in class. Fertil. Steril. 97, 260–266 (2012).

    Article  PubMed  Google Scholar 

  30. Kovac, J., Smith, R., Cajipe, M., Lamb, D. & Lipshultz, L. Men with a complete absence of normal sperm morphology exhibit high rates of success without assisted reproduction. Asian J. Androl. 19, 39–42 (2016).

    PubMed Central  Google Scholar 

  31. Carmeli, Y. S. & Birenbaum-Carmeli, D. The predicament of masculinity: towards understanding the male's experience of infertility treatments. Sex. Roles 30, 663–677 (1994).

    Article  Google Scholar 

  32. Inhorn, M. C. Masturbation, semen collection and men's IVF experiences: anxieties in the muslim world. Body Soc. 13, 37–53 (2007).

    Article  Google Scholar 

  33. Maatman, T. J., Aldrin, L. & Carothers, G. G. Patient noncompliance after vasectomy. Fertil. Steril. 68, 552–555 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Oehninger, S. Clinical and laboratory management of male infertility: an opinion on its current status. J. Androl. 21, 814–821 (2000).

    CAS  PubMed  Google Scholar 

  35. Schieve, L. A. et al. Live-birth rates and multiple-birth risk using in vitro fertilization. JAMA 282, 1832–1838 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Fauser, B. C., Devroey, P. & Macklon, N. S. Multiple birth resulting from ovarian stimulation for subfertility treatment. Lancet 365, 1807–1816 (2005).

    Article  PubMed  Google Scholar 

  37. Gnoth, C. et al. Final ART success rates: a 10 years survey. Hum. Reprod. 26, 2239–2246 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Lemmen, J. G., Rodríguez, N. M., Andreasen, L. D., Loft, A. & Ziebe, S. The total pregnancy potential per oocyte aspiration after assisted reproduction — in how many cycles are biologically competent oocytes available? J. Assist. Reprod. Genet. 33, 849–854 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Malizia, B. A., Hacker, M. R. & Penzias, A. S. Cumulative live-birth rates after in vitro fertilization. N. Engl. J. Med. 360, 236–243 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Dyer, S. et al. International Committee for Monitoring Assisted Reproductive Technologies world report: assisted reproductive technology 2008, 2009 and 2010. Hum. Reprod. 31, 1588–1609 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Zini, A. et al. Prevalence of abnormal sperm DNA denaturation in fertile and infertile men. Urology 60, 1069–1072 (2002).

    Article  PubMed  Google Scholar 

  42. Said, T. M. & Land, J. A. Effects of advanced selection methods on sperm quality and ART outcome: a systematic review. Hum. Reprod. Update 17, 719–733 (2011).

    Article  PubMed  Google Scholar 

  43. Davies, M. J. et al. Reproductive technologies and the risk of birth defects. N. Engl. J. Med. 366, 1803–1813 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Jackson, R. E. et al. Effects of semen storage and separation techniques on sperm DNA fragmentation. Fertil. Steril. 94, 2626–2630 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Belva, F. et al. Semen quality of young adult ICSI offspring: the first results. Hum. Reprod. 31, 2811–2820 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Zhu, L. et al. Maternal and live-birth outcomes of pregnancies following assisted reproductive technology: a retrospective cohort study. Sci. Rep. 6, 35141 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nabi, A., Khalili, M. A., Halvaei, I. & Roodbari, F. Prolonged incubation of processed human spermatozoa will increase DNA fragmentation. Andrologia 46, 374–379 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Matsuura, R., Takeuchi, T. & Yoshida, A. Preparation and incubation conditions affect the DNA integrity of ejaculated human spermatozoa. Asian J. Androl. 12, 753–759 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Peer, S. et al. Is fine morphology of the human sperm nuclei affected by in vitro incubation at 37 °C? Fertil. Steril. 88, 1589–1594 (2007).

    Article  PubMed  Google Scholar 

  50. Sackmann, E. K., Fulton, A. L. & Beebe, D. J. The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Beebe, D. J., Mensing, G. A. & Walker, G. M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Yetisen, A. K., Akram, M. S. & Lowe, C. R. Paper-based microfluidic point-of-care diagnostic devices. Lab. Chip 13, 2210–2251 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Martinez, A. W., Phillips, S. T., Whitesides, G. M. & Carrilho, E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82, 3–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Koh, J. B. Y. The study of spermatozoa and sorting in relation to human reproduction. Microfluid. Nanofluid. 18, 755–774 (2015).

    Article  CAS  Google Scholar 

  56. Knowlton, S. M., Sadasivam, M. & Tasoglu, S. Microfluidics for sperm research. Trends Biotechnol. 33, 221–229 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Rappa, K. L. et al. Sperm processing for advanced reproductive technologies: where are we today? Biotechnol. Adv. 34, 578–587 (2016).

    Article  PubMed  Google Scholar 

  58. Suarez, S. S. & Wu, M. Microfluidic devices for the study of sperm migration. Mol. Hum. Reprod. 23, 227–234 (2017).

    CAS  PubMed  Google Scholar 

  59. Tung, C. et al. Emergence of upstream swimming via a hydrodynamic transition. Phys. Rev. Lett. 114, 108102 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Suarez, S. S. & Pacey, A. A. Sperm transport in the female reproductive tract. Hum. Reprod. Update 12, 23–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 3 (1977).

    Article  Google Scholar 

  62. Brennen, C. & Winet, H. Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9, 339–398 (1977).

    Article  Google Scholar 

  63. Lauga, E. & Powers, T. R. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 96601 (2009).

    Article  Google Scholar 

  64. Lauga, E. Life around the scallop theorem. Soft Matter 7, 3060–3065 (2011).

    Article  CAS  Google Scholar 

  65. Inaba, K. Sperm flagella: comparative and phylogenetic perspectives of protein components. Mol. Hum. Reprod. 17, 524–538 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Brokaw, C. in Proc. Sec. Int. Symp. Aqua-Biomech. (Caltech, 2003).

    Google Scholar 

  67. Guerrero, A. et al. Strategies for locating the female gamete: the importance of measuring sperm trajectories in three spatial dimensions. Mol. Hum. Reprod. 17, 511–523 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lindemann, C. B. & Lesich, K. A. Flagellar and ciliary beating: the proven and the possible. J. Cell Sci. 123, 519–528 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Riedel-Kruse, I. H., Hilfinger, A., Howard, J. & Jülicher, F. How molecular motors shape the flagellar beat. HFSP J. 1, 192–208 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lin, J., Okada, K., Raytchev, M., Smith, M. C. & Nicastro, D. Structural mechanism of the dynein power stroke. Nat. Cell Biol. 16, 479–485 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gadêlha, H., Gaffney, E. A., Smith, D. J. & Kirkman-Brown, J. C. Nonlinear instability in flagellar dynamics: a novel modulation mechanism in sperm migration? J. R. Soc. Interface 7, 1689–1697 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  72. David, G., Serres, C. & Jouannet, P. Kinematics of human spermatozoa. Gamete Res. 4, 83–95 (1981).

    Article  Google Scholar 

  73. Ishijima, S., Sekiguchi, K. & Hiramoto, Y. Comparative study of the beat patterns of American and Asian horseshoe crab sperm: evidence for a role of the central pair complex in forming planar waveforms in flagella. Cytoskeleton 9, 264–270 (1988).

    Article  Google Scholar 

  74. Woolley, D. M. & Vernon, G. G. A study of helical and planar waves on sea urchin sperm flagella, with a theory of how they are generated. J. Exp. Biol. 204, 1333–1345 (2001).

    CAS  PubMed  Google Scholar 

  75. Publicover, S., Harper, C. V. & Barratt, C. [Ca2+]i signalling in sperm—making the most of what you've got. Nat. Cell Biol. 9, 235–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Tamm, S. Ca2+ channels and signalling in cilia and flagella. Trends Cell Biol. 4, 305–310 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Gibbons, I. R., Shingyoji, C., Murakami, A. & Takahashi, K. Spontaneous recovery after experimental manipulation of the plane of beat in sperm flagella. Nature 325, 351–352 (1987).

    Article  CAS  PubMed  Google Scholar 

  78. Woolley, D. M. Flagellar oscillation: a commentary on proposed mechanisms. Biol. Rev. Camb. Philos. Soc. 85, 453–470 (2010).

    PubMed  Google Scholar 

  79. Phillips, D. M. Comparative analysis of mammalian sperm motility. J. Cell Biol. 53, 561–573 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rurangwa, E., Kime, D. E., Ollevier, F. & Nash, J. P. The measurement of sperm motility and factors affecting sperm quality in cultured fish. Aquaculture 234, 1–28 (2004).

    Article  Google Scholar 

  81. Mortimer, S. T. CASA — practical aspects. J. Androl. 21, 515–524 (2000).

    CAS  PubMed  Google Scholar 

  82. Amann, R. P. & Waberski, D. Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology 81, 5–17.e3 (2014).

    Article  PubMed  Google Scholar 

  83. Yu, X., Hong, J., Liu, C. & Kim, M. K. Review of digital holographic microscopy for three-dimensional profiling and tracking. Opt. Eng. 53, 112306 (2014).

    Article  Google Scholar 

  84. Di Caprio, G. et al. Holographic imaging of unlabelled sperm cells for semen analysis: a review. J. Biophotonics 8, 779–789 (2015).

    Article  PubMed  Google Scholar 

  85. Ozcan, A. & Mcleod, E. Lensless imaging and sensing. Annu. Rev. Biomed. Eng. 18, 77–102 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. McLeod, E. & Ozcan, A. Unconventional methods of imaging: computational microscopy and compact implementations. Rep. Prog. Phys. 79, 76001 (2016).

    Article  CAS  Google Scholar 

  87. Greenbaum, A. et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat. Methods 9, 889–895 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Su, T.-W., Xue, L. & Ozcan, A. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc. Natl Acad. Sci. USA 109, 16018–16022 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Su, T.-W. et al. Sperm trajectories form chiral ribbons. Sci. Rep. 3, 1664 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Merola, F. et al. Digital holography as a method for 3D imaging and estimating the biovolume of motile cells. Lab Chip 13, 4512–4516 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Di Caprio, G. et al. Quantitative label-free animal sperm imaging by means of digital holographic microscopy. IEEE J. Sel. Top. Quantum Electron. 16, 833–840 (2010).

    Article  CAS  Google Scholar 

  92. Berke, A., Turner, L., Berg, H. & Lauga, E. Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101, 38102 (2008).

    Article  CAS  Google Scholar 

  93. Rothschild, L. Non-random distribution of bull spermatozoa in a drop of sperm suspension. Nature 198, 1221–1222 (1963).

    Article  Google Scholar 

  94. Fauci, L. J. & McDonald, A. Sperm motility in the presence of boundaries. Bull. Math. Biol. 57, 679–699 (1995).

    Article  CAS  PubMed  Google Scholar 

  95. Drescher, K., Dunkel, J., Cisneros, L. H., Ganguly, S. & Goldstein, R. E. Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering. Proc. Natl Acad. Sci. USA 108, 10940–10945 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Elgeti, J., Kaupp, U. B. & Gompper, G. Hydrodynamics of sperm cells near surfaces. Biophys. J. 99, 1018–1026 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Woolley, D. M. Motility of spermatozoa at surfaces. Reproduction 126, 259–270 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Smith, D. J. & Blake, J. R. Surface accumulation of spermatozoa: a fluid dynamic phenomenon. Math. Sci. 34, 74–87 (2009).

    Google Scholar 

  99. Smith, D. J., Gaffney, E. A., Blake, J. R. & Kirkman-Brown, J. C. Human sperm accumulation near surfaces: a simulation study. J. Fluid Mech. 621, 289–320 (2009).

    Article  Google Scholar 

  100. Smith, D. J., Gaffney, E. A., Gadelha, H., Kapur, N. & Kirkman-Brown, J. C. Bend propagation in the flagella of migrating human sperm, and its modulation by viscosity. Cell. Motil. Cytoskeleton 66, 220–236 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Katz, D. F., Blake, J. R. & Paveri-Fontana, S. L. On the movement of slender bodies near plane boundaries at low Reynolds number. J. Fluid Mech. 72, 529–540 (1975).

    Article  Google Scholar 

  102. Cosson, J., Huitorel, P. & Gagnon, C. How spermatozoa come to be confined to surfaces. Cell. Motil. Cytoskeleton 54, 56–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Shum, H., Gaffney, E. A. & Smith, D. J. Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry. Proc. R. Soc. London Ser. A. 466, 1725–1748 (2010).

    Article  Google Scholar 

  104. Smith, D. J. et al. Comment on the article by J. Elgeti, U. B. Kaupp, and G. Gampper: hydrodynamics of sperm cells near surfaces. Biophys. J. 100, 2318–2320 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Friedrich, B. M., Riedel-Kruse, I. H., Howard, J. & Jülicher, F. High-precision tracking of sperm swimming fine structure provides strong test of resistive force theory. J. Exp. Biol. 213, 1226–1234 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Elgeti, J., Winkler, R. G. & Gompper, G. Physics of microswimmers — single particle motion and collective behavior: a review. Rep. Prog. Phys. 78, 56601 (2015).

    Article  CAS  Google Scholar 

  107. Lauga, E. Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48, 105–130 (2016).

    Article  Google Scholar 

  108. Elgeti, J., Benjaminkaupp, U. & Gompper, G. Response to comment on article: hydrodynamics of sperm cells near surfaces. Biophys. J. 100, 2321–2324 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  109. Winet, H., Bernstein, G. S. & Head, J. Observations on the response of human spermatozoa to gravity, boundaries and fluid shear. J. Reprod. Fertil. 70, 511–523 (1984).

    Article  CAS  PubMed  Google Scholar 

  110. Nosrati, R., Driouchi, A., Yip, C. M. & Sinton, D. Two-dimensional slither swimming of sperm within a micrometre of a surface. Nat. Commun. 6, 8703 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Stone, L. Basic research: just keep swimming — sperm exhibit a 2D slither motion. Nat. Rev. Urol. 13, 2–3 (2015).

    Article  PubMed  Google Scholar 

  112. Ishimoto, K., Gadêlha, H., Gaffney, E. A., Smith, D. J. & Kirkman-Brown, J. Coarse-graining the fluid flow around a human sperm. Phys. Rev. Lett. 118, 124501 (2017).

    Article  PubMed  Google Scholar 

  113. Yang, Y., Elgeti, J. & Gompper, G. Cooperation of sperm in two dimensions: synchronization, attraction, and aggregation through hydrodynamic interactions. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78, 61903 (2008).

    Article  CAS  Google Scholar 

  114. Woolley, D. M., Crockett, R. F., Groom, W. D. I. & Revell, S. G. A study of synchronisation between the flagella of bull spermatozoa, with related observations. J. Exp. Biol. 212, 2215–2223 (2009).

    Article  PubMed  Google Scholar 

  115. Elfring, G. J., Pak, O. S. & Lauga, E. Two-dimensional flagellar synchronization in viscoelastic fluids. J. Fluid Mech. 646, 505–515 (2009).

    Article  Google Scholar 

  116. Brumley, D. R., Wan, K. Y., Polin, M. & Goldstein, R. E. Flagellar synchronization through direct hydrodynamic interactions. eLife 3, e02750 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Elfring, G. J. & Lauga, E. Synchronization of flexible sheets. J. Fluid Mech. 674, 163–173 (2011).

    Article  Google Scholar 

  118. Taylor, G. Analysis of the swimming of microscopic organisms. Proc. R. Soc. London Ser. A 209, 447–461 (1951).

    Article  Google Scholar 

  119. Riedel, I. H., Kruse, K. & Howard, J. A self-organized vortex array of hydrodynamically entrained sperm cells. Science 309, 300–303 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Denissenko, P., Kantsler, V., Smith, D. J. & Kirkman-Brown, J. Human spermatozoa migration in microchannels reveals boundary-following navigation. Proc. Natl Acad. Sci. USA 109, 8007–8010 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kantsler, V., Dunkel, J., Polin, M. & Goldstein, R. E. Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Proc. Natl Acad. Sci. USA 110, 1187–1192 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Shum, H. & Gaffney, E. A. Hydrodynamic analysis of flagellated bacteria swimming in corners of rectangular channels. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92, 63016 (2015).

    Article  CAS  Google Scholar 

  123. Nosrati, R., Graham, P. J., Liu, Q. & Sinton, D. Predominance of sperm motion in corners. Sci. Rep. 6, 26669 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Magdanz, V., Koch, B., Sanchez, S. & Schmidt, O. G. Sperm dynamics in tubular confinement. Small 11, 781–785 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Suarez, S. S. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res. 363, 185–194 (2016).

    Article  PubMed  Google Scholar 

  126. Ferraz, M. A. M. M., Henning, H. H. W., Stout, T. A. E., Vos, P. L. A. M. & Gadella, B. M. Designing 3-dimensional in vitro oviduct culture systems to study mammalian fertilization and embryo production. Ann. Biomed. Eng. 45, 1731–1744 (2017).

    Article  PubMed  Google Scholar 

  127. Miki, K. & Clapham, D. E. Rheotaxis guides Mammalian sperm. Curr. Biol. 23, 443–452 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lai, D., Takayama, S. & Smith, G. D. Recent microfluidic devices for studying gamete and embryo biomechanics. J. Biomech. 48, 1671–1678 (2015).

    Article  PubMed  Google Scholar 

  129. Eisenbach, M. & Giojalas, L. C. Sperm guidance in mammals – an unpaved road to the egg. Nat. Rev. Mol. Cell Biol. 7, 276–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Kirkman-Brown, J. C. & Smith, D. J. Sperm motility: is viscosity fundamental to progress? Mol. Hum. Reprod. 17, 539–544 (2011).

    Article  PubMed  Google Scholar 

  131. Teran, J., Fauci, L. & Shelley, M. Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Phys. Rev. Lett. 104, 38101 (2010).

    Article  CAS  Google Scholar 

  132. Fu, H. C., Wolgemuth, C. W. & Powers, T. R. Swimming speeds of filaments in nonlinearly viscoelastic fluids. Phys. Fluids 21, 33102 (2009).

    Article  CAS  Google Scholar 

  133. Lauga, E. Propulsion in a viscoelastic fluid. Phys. Fluids 19, 83104 (2007).

    Article  CAS  Google Scholar 

  134. Jansen, R. Fallopian tube isthmic mucus and ovum transport. Science 201, 349–351 (1978).

    Article  CAS  PubMed  Google Scholar 

  135. Bretherton, F. P. & Rothschild . Rheotaxis of spermatozoa. Proc. R. Soc. B Biol. Sci. 153, 490–502 (1961).

    Article  Google Scholar 

  136. Ishimoto, K. & Gaffney, E. A. Fluid flow and sperm guidance: a simulation study of hydrodynamic sperm rheotaxis. J. R. Soc. Interface 12, 20150172 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Zhang, Z. et al. Human sperm rheotaxis: a passive physical process. Sci. Rep. 6, 23553 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kantsler, V., Dunkel, J., Blayney, M. & Goldstein, R. E. Rheotaxis facilitates upstream navigation of mammalian sperm cells. eLife 3, e02403 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  139. El-Sherry, T. M., Elsayed, M., Abdelhafez, H. K. & Abdelgawad, M. Characterization of rheotaxis of bull sperm using microfluidics. Integr. Biol. (Camb.) 6, 1111–1121 (2014).

    Article  Google Scholar 

  140. Tung, C.-K., Ardon, F., Fiore, A. G., Suarez, S. S. & Wu, M. Cooperative roles of biological flow and surface topography in guiding sperm migration revealed by a microfluidic model. Lab Chip 14, 1348–1356 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tung, C.-K. et al. Microgrooves and fluid flows provide preferential passageways for sperm over pathogen Tritrichomonas foetus. Proc. Natl Acad. Sci. USA 112, 5431–5436 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bukatin, A., Kukhtevich, I., Stoop, N., Dunkel, J. & Kantsler, V. Bimodal rheotactic behavior reflects flagellar beat asymmetry in human sperm cells. Proc. Natl Acad. Sci. USA 112, 15904–15909 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cohen-Dayag, A., Tur-Kaspa, I., Dor, J., Mashiach, S. & Eisenbach, M. Sperm capacitation in humans is transient and correlates with chemotactic responsiveness to follicular factors. Proc. Natl Acad. Sci. USA 92, 11039–11043 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Eisenbach, M. Sperm chemotaxis. Rev. Reprod. 4, 56–66 (1999).

    Article  CAS  PubMed  Google Scholar 

  145. Alvarez, L., Friedrich, B. M., Gompper, G. & Kaupp, U. B. The computational sperm cell. Trends Cell Biol. 24, 198–207 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Kaupp, U. B. et al. The signal flow and motor response controling chemotaxis of sea urchin sperm. Nat. Cell Biol. 5, 109–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Kirkman-Brown, J. C., Sutton, K. A. & Florman, H. M. How to attract a sperm. Nat. Cell Biol. 5, 93–96 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Jikeli, J. F. et al. Sperm navigation along helical paths in 3D chemoattractant landscapes. Nat. Commun. 6, 7985 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Friedrich, B. M. & Jülicher, F. Chemotaxis of sperm cells. Proc. Natl Acad. Sci. USA 104, 13256–13261 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hussain, Y. H., Guasto, J. S., Zimmer, R. K., Stocker, R. & Riffell, J. A. Sperm chemotaxis promotes individual fertilization success in sea urchins. J. Exp. Biol. 219, 1458–1466 (2016).

    Article  PubMed  Google Scholar 

  151. Koyama, S., Amarie, D., Soini, H. A., Novotny, M. V. & Jacobson, S. C. Chemotaxis assays of mouse sperm on microfluidic devices. Anal. Chem. 78, 3354–3359 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Xie, L. et al. Integration of sperm motility and chemotaxis screening with a microchannel-based device. Clin. Chem. 56, 1270–1278 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Chang, H., Kim, B. J., Kim, Y. S., Suarez, S. S. & Wu, M. Different migration patterns of sea urchin and mouse sperm revealed by a microfluidic chemotaxis device. PLoS ONE 8, e60587 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kim, B. J. & Wu, M. Microfluidics for mammalian cell chemotaxis. Ann. Biomed. Eng. 40, 1316–1327 (2012).

    Article  PubMed  Google Scholar 

  155. Haessler, U., Kalinin, Y., Swartz, M. A. & Wu, M. An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies. Biomed. Microdevices 11, 827–835 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Haessler, U., Pisano, M., Wu, M. & Swartz, M. A. Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19. Proc. Natl Acad. Sci. USA 108, 5614–5619 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Lishko, P. V., Botchkina, I. L. & Kirichok, Y. Progesterone activates the principal Ca2+ channel of human sperm. Nature 471, 387–391 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Zhang, Y. et al. Generation of gradients on a microfluidic device: toward a high-throughput investigation of spermatozoa chemotaxis. PLoS ONE 10, e0142555 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Centola, G. M. Semen assessment. Urol. Clin. North Am. 41, 163–167 (2014).

    Article  PubMed  Google Scholar 

  160. Rothmann, S. A. & Reese, A. A. in Infertility in the Male (eds Niederberger, C. S., Lipshultz, L. I. & Howards, S. S.) 550–573 (Cambridge Univ. Press, 2009).

    Book  Google Scholar 

  161. Frimat, J.-P. et al. Make it spin: individual trapping of sperm for analysis and recovery using micro-contact printing. Lab Chip 14, 2635–2641 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Chen, C.-Y. et al. Sperm quality assessment via separation and sedimentation in a microfluidic device. Analyst 138, 4967–4974 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. McCormack, M. C., McCallum, S. & Behr, B. A novel microfluidic device for male subfertility screening. J. Urol. 175, 2223–2227 (2006).

    Article  PubMed  Google Scholar 

  164. Chen, Y.-A. et al. Direct characterization of motion-dependent parameters of sperm in a microfluidic device: proof of principle. Clin. Chem. 59, 493–501 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Chen, Y.-A. et al. Analysis of sperm concentration and motility in a microfluidic device. Microfluid. Nanofluid. 10, 59–67 (2011).

    Article  Google Scholar 

  166. Segerink, L. I., Sprenkels, A. J., ter Braak, P. M., Vermes, I. & van den Berg, A. On-chip determination of spermatozoa concentration using electrical impedance measurements. Lab Chip 10, 1018–1024 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. de Wagenaar, B. et al. Spermometer: electrical characterization of single boar sperm motility. Fertil. Steril. 106, 773–780.e6 (2016).

    Article  PubMed  Google Scholar 

  168. Elsayed, M., El-Sherry, T. M. & Abdelgawad, M. Development of computer-assisted sperm analysis plugin for analyzing sperm motion in microfluidic environments using Image-J. Theriogenology 84, 1367–1377 (2015).

    Article  PubMed  Google Scholar 

  169. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Karabacak, N. M. et al. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat. Protoc. 9, 694–710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Chen, Y. et al. Rare cell isolation and analysis in microfluidics. Lab Chip 14, 626–645 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kanakasabapathy, M. K. et al. An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci. Transl Med. 9, eaai7863 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chin, C. D. et al. Mobile device for disease diagnosis and data tracking in resource-limited settings. Clin. Chem. 59, 629–640 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Wei, Q. et al. Imaging and sizing of single DNA molecules on a mobile phone. ACS Nano 8, 12725–12733 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Klotz, K. L. et al. Clinical and consumer trial performance of a sensitive immunodiagnostic home test that qualitatively detects low concentrations of sperm following vasectomy. J. Urol. 180, 2569–2576 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Coppola, M. A. et al. SpermCheck Fertility, an immunodiagnostic home test that detects normozoospermia and severe oligozoospermia. Hum. Reprod. 25, 853–861 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Milkin, T. OTC product: Fertell. J. Am. Pharm. Assoc. (2003) 47, e16–e17 (2007).

    Article  Google Scholar 

  179. Björndahl, L., Kirkman-Brown, J., Hart, G., Rattle, S. & Barratt, C. L. R. Development of a novel home sperm test. Hum. Reprod. 21, 145–149 (2006).

    Article  PubMed  Google Scholar 

  180. Matsuura, K. et al. Paper-based diagnostic devices for evaluating the quality of human sperm. Microfluid. Nanofluid. 16, 857–867 (2014).

    Article  CAS  Google Scholar 

  181. Matsuura, K., Huang, H.-W., Chen, M.-C., Chen, Y. & Cheng, C.-M. Relationship between porcine sperm motility and sperm enzymatic activity using paper-based devices. Sci. Rep. 7, 46213 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ruiz-Pesini, E. et al. Correlation of sperm motility with mitochondrial enzymatic activities. Clin. Chem. 44, 1616–1620 (1998).

    CAS  PubMed  Google Scholar 

  183. Nosrati, R. et al. Paper-based quantification of male fertility potential. Clin. Chem. 62, 458–465 (2016).

    Article  CAS  PubMed  Google Scholar 

  184. Guo, T. W., Nayak, S. & Sia, S. K. Toward a microfluidics-based home male fertility test. Clin. Chem. 62, 421–422 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Gong, M. M., Nosrati, R., San Gabriel, M. C., Zini, A. & Sinton, D. Direct DNA analysis with paper-based ion concentration polarization. J. Am. Chem. Soc. 137, 13913–13919 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Nosrati, R., Gong, M. M., San Gabriel, M. C., Zini, A. & Sinton, D. Paper-based sperm DNA integrity analysis. Anal. Methods 8, 6260–6264 (2016).

    Article  CAS  Google Scholar 

  187. Boulet, S. L. et al. Assisted reproductive technology and birth defects among liveborn infants in Florida, Massachusetts, and Michigan, 2000–2010. JAMA Pediatr. 170, e154934 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Beydola, T., Sharma, R. K. & Agarwal, A. in Medical and Surgical Management of Male Infertility (eds Botros RMB, R., Nabil, A., Ashok, A. & Sabanegh, J. E.) 244–251 (Jaypee Brothers Med. Publ., 2014).

    Google Scholar 

  189. Sakkas, D. Novel technologies for selecting the best sperm for in vitro fertilization and intracytoplasmic sperm injection. Fertil. Steril. 99, 1023–1029 (2013).

    Article  PubMed  Google Scholar 

  190. Sakkas, D., Pool, T. B. & Barrett, C. B. Analyzing IVF laboratory error rates: highlight or hide? Reprod. Biomed. Online 31, 447–448 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. Intra, G. et al. Application of failure mode and effect analysis in an assisted reproduction technology laboratory. Reprod. Biomed. Online 33, 132–139 (2016).

    Article  PubMed  Google Scholar 

  192. Gaffney, E. A., Gadêlha, H., Smith, D. J., Blake, J. R. & Kirkman-Brown, J. C. Mammalian sperm motility: observation and theory. Annu. Rev. Fluid Mech. 43, 501–528 (2011).

    Article  Google Scholar 

  193. Fauci, L. J. & Dillon, R. Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech. 38, 371–394 (2006).

    Article  Google Scholar 

  194. Lai, D., Chiu, J. H.-C., Smith, G. D. & Takayama, S. in Microfluidics for Medical Applications (eds van den Berg, A. & Segernik, L.) 131–150 (R. Soc. Chem., 2015).

    Google Scholar 

  195. Lai, D., Smith, G. D. & Takayama, S. Lab-on-a-chip biophotonics: its application to assisted reproductive technologies. J. Biophotonics 660, 650–660 (2012).

    Article  CAS  Google Scholar 

  196. Cho, B. S. et al. Passively driven integrated microfluidic system for separation of motile sperm. Anal. Chem. 75, 1671–1675 (2003).

    Article  CAS  PubMed  Google Scholar 

  197. Schuster, T. G., Cho, B., Keller, L. M., Takayama, S. & Smith, G. D. Isolation of motile spermatozoa from semen samples using microfluidics. Reprod. Biomed. Online 7, 75–81 (2003).

    Article  PubMed  Google Scholar 

  198. Shirota, K. et al. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertil. Steril. 105, 315–321.e1 (2016).

    Article  CAS  PubMed  Google Scholar 

  199. Seo, D., Agca, Y., Feng, Z. C. & Critser, J. K. Development of sorting, aligning, and orienting motile sperm using microfluidic device operated by hydrostatic pressure. Microfluid. Nanofluid. 3, 561–570 (2007).

    Article  Google Scholar 

  200. Wu, J.-K. et al. High-throughput flowing upstream sperm sorting in a retarding flow field for human semen analysis. Analyst 142, 938–944 (2017).

    Article  CAS  PubMed  Google Scholar 

  201. Ma, R. et al. In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development. Anal. Chem. 83, 2964–2970 (2011).

    Article  CAS  PubMed  Google Scholar 

  202. Ainsworth, C., Nixon, B. & Aitken, R. J. Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum. Reprod. 20, 2261–2270 (2005).

    Article  CAS  PubMed  Google Scholar 

  203. Rosales-Cruzaley, E., Cota-Elizondo, P. A., Sánchez, D. & Lapizco-Encinas, B. H. Sperm cells manipulation employing dielectrophoresis. Bioprocess Biosyst. Eng. 36, 1353–1362 (2013).

    Article  CAS  PubMed  Google Scholar 

  204. de Wagenaar, B. et al. Towards microfluidic sperm refinement: impedance-based analysis and sorting of sperm cells. Lab Chip 16, 1514–1522 (2016).

    Article  CAS  PubMed  Google Scholar 

  205. de Wagenaar, B. et al. Microfluidic single sperm entrapment and analysis. Lab Chip 15, 1294–1301 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Ohta, A. T. et al. Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers. Lab Chip 10, 3213–3217 (2010).

    Article  CAS  PubMed  Google Scholar 

  207. Garcia, M. M. et al. A noninvasive, motility independent, sperm sorting method and technology to identify and retrieve individual viable nonmotile sperm for intracytoplasmic sperm injection. J. Urol. 184, 2466–2472 (2010).

    Article  PubMed  Google Scholar 

  208. Chiu, D. T. et al. Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem 2, 201–223 (2017).

    Article  CAS  Google Scholar 

  209. Medina-Sánchez, M., Schwarz, L., Meyer, A. K., Hebenstreit, F. & Schmidt, O. G. Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Lett. 16, 555–561 (2016).

    Article  CAS  PubMed  Google Scholar 

  210. Tasoglu, S. et al. Exhaustion of racing sperm in nature-mimicking microfluidic channels during sorting. Small 9, 3374–3384 (2013).

    Article  CAS  PubMed  Google Scholar 

  211. Nosrati, R. et al. Rapid selection of sperm with high DNA integrity. Lab Chip 14, 1142–1150 (2014).

    Article  CAS  PubMed  Google Scholar 

  212. Eamer, L., Nosrati, R., Vollmer, M., Zini, A. & Sinton, D. Microfluidic assessment of swimming media for motility-based sperm selection. Biomicrofluidics 9, 44113 (2015).

    Article  CAS  Google Scholar 

  213. Galajda, P., Keymer, J., Chaikin, P. & Austin, R. A wall of funnels concentrates swimming bacteria. J. Bacteriol. 189, 8704–8707 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Elizabeth Hulme, S. et al. Using ratchets and sorters to fractionate motile cells of Escherichia coli by length. Lab Chip 8, 1888–1895 (2008).

    Article  CAS  PubMed  Google Scholar 

  215. Guidobaldi, A. et al. Geometrical guidance and trapping transition of human sperm cells. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89, 32720 (2014).

    Article  CAS  Google Scholar 

  216. Guidobaldi, H. A. et al. Disrupting the wall accumulation of human sperm cells by artificial corrugation. Biomicrofluidics 9, 24122 (2015).

    Article  CAS  Google Scholar 

  217. Eamer, L. et al. Turning the corner in fertility: high DNA integrity of boundary-following sperm. Lab Chip 16, 2418–2422 (2016).

    Article  CAS  PubMed  Google Scholar 

  218. DiLuzio, W. R. et al. Escherichia coli swim on the right-hand side. Nature 435, 1271–1274 (2005).

    Article  CAS  PubMed  Google Scholar 

  219. Zhang, X. et al. Lensless imaging for simultaneous microfluidic sperm monitoring and sorting. Lab Chip 11, 2535–2540 (2011).

    Article  CAS  PubMed  Google Scholar 

  220. Asghar, W. et al. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Adv. Healthc. Mater. 3, 1671–1679 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Hauser, R. et al. Virtual azoospermia and cryptozoospermia — fresh/frozen testicular or ejaculate sperm for better IVF outcome? J. Androl. 32, 484–490 (2011).

    Article  PubMed  Google Scholar 

  222. Kilchevsky, A. & Honig, S. Male factor infertility in 2011: semen quality, sperm selection and hematospermia. Nat. Rev. Urol. 9, 68–70 (2012).

    Article  PubMed  Google Scholar 

  223. Volpatti, L. R. & Yetisen, A. K. Commercialization of microfluidic devices. Trends Biotechnol. 32, 347–350 (2014).

    Article  CAS  PubMed  Google Scholar 

  224. Berthier, E., Young, E. W. K. & Beebe, D. Engineers are from PDMS-land, biologists are from Polystyrenia. Lab Chip 12, 1224–1237 (2012).

    Article  CAS  PubMed  Google Scholar 

  225. Xiao, S. et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat. Commun. 8, 14584 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Ferraz, M. A. M. M. et al. Improved bovine embryo production in an oviduct-on-a-chip system: prevention of poly-spermic fertilization and parthenogenic activation. Lab Chip 17, 905–916 (2017).

    Article  CAS  PubMed  Google Scholar 

  227. Drabovich, A. P., Jarvi, K. & Diamandis, E. P. Verification of male infertility biomarkers in seminal plasma by multiplex selected reaction monitoring assay. Mol. Cell. Proteomics 10, http://dx.doi.org/10.1074/mcp.M110.004127 (2011).

  228. Drabovich, A. P. et al. Differential diagnosis of azoospermia with proteomic biomarkers ECM1 and TEX101 quantified in seminal plasma proteomic biomarkers ECM1 and TEX101 quantified in seminal plasma. Sci. Transl Med. 5, 212ra160 (2013).

    Article  CAS  PubMed  Google Scholar 

  229. Drabovich, A. P., Saraon, P., Jarvi, K. & Diamandis, E. P. Seminal plasma as a diagnostic fluid for male reproductive system disorders. Nat. Rev. Urol. 11, 278–288 (2014).

    Article  CAS  PubMed  Google Scholar 

  230. Hong, Y. et al. Systematic characterization of seminal plasma piRNAs as molecular biomarkers for male infertility. Sci. Rep. 6, 24229 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Rao, A. R., Motiwala, H. G. & Karim, O. M. The discovery of prostate-specific antigen. BJU Int. 101, 5–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  232. Turek, P. J. Practical approaches to the diagnosis and management of male infertility. Nat. Clin. Pract. Urol. 2, 226–238 (2005).

    Article  PubMed  Google Scholar 

  233. Coughlan, C. & Ledger, W. L. In-vitro fertilisation. Obstet. Gynaecol. Reprod. Med. 18, 300–306 (2008).

    Article  Google Scholar 

  234. Palermo, G., Joris, H., Devroey, P. & Van Steirteghem, A. C. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340, 17–18 (1992).

    Article  CAS  PubMed  Google Scholar 

  235. Sakkas, D., Ramalingam, M., Garrido, N. & Barratt, C. L. R. Sperm selection in natural conception: what can we learn from mother nature to improve assisted reproduction outcomes? Hum. Reprod. Update 21, 711–726 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Gray, J. & Hancock, G. J. The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 32, 802–814 (1955).

    Google Scholar 

  237. Berg, H. C. in Random Walks in Biology (ed. Berg, H. C.) 75–94 (Princeton Univ. Press, 1983).

    Google Scholar 

  238. Centers for Disease Control and Prevention. ART success rates. CDC http://www.cdc.gov/art/artdata/index.html (2017).

  239. The World Bank. World Data Bank. The World Bank http://databank.worldbank.org/data/reports.aspx?source=gender-statistics (2017).

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC I2IPJ469164-14, NSERC RGPIN-2015-06701), Canadian Institutes of Health Research (CIHR 139088), the Ontario Centres of Excellence (169411), and MaRS Innovation. The authors also gratefully acknowledge an NSERC E.W.R. Steacie Memorial Fellowship (DS), the Canada Research Chairs Program (DS), an NSERC postdoctoral fellowship (RN), and a Queen's University postdoctoral fund (RN).

Author information

Authors and Affiliations

Authors

Contributions

R.N., P.J.G., B.Z. and J.R. researched data for and wrote the article. All authors made substantial contributions to discussion of content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to David Sinton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information Tables S1–S2 (PDF 727 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nosrati, R., Graham, P., Zhang, B. et al. Microfluidics for sperm analysis and selection. Nat Rev Urol 14, 707–730 (2017). https://doi.org/10.1038/nrurol.2017.175

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2017.175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing