Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enhancing active surveillance of prostate cancer: the potential of exercise medicine

Key Points

  • A growing proportion of men with prostate cancer of a low volume, stage and grade are being managed with AS

  • No established recommendations exist for delaying, or preventing, the progression of low-risk prostate cancer and, thus, avoiding the need for active treatment

  • Preliminary evidence suggests that lifestyle and/or exercise interventions might have therapeutic potential for men with prostate cancer who are on AS

  • Exercise as medicine for men on AS has the potential to delay both disease progression and the transition to requiring active therapy

  • Trials examining exercise as medicine during AS, as well as other components of lifestyle interventions, are required to build upon previous findings

  • If proven effective, exercise could easily be implemented as a component of clinical best practice during AS, with an array of beneficial effects including enhanced quality of life

Abstract

Active surveillance (AS) is a strategy for the management of patients with low-risk, localized prostate cancer, in which men undergo regular monitoring of serum PSA levels and tumour characteristics, using multiparametric MRI and repeat biopsy sampling, to identify signs of disease progression. This strategy reduces overtreatment of clinically insignificant disease while also preserving opportunities for curative therapy in patients whose disease progresses. Preliminary studies of lifestyle interventions involving basic exercise advice have indicated that exercise reduces the numbers of patients undergoing active treatment, as well as modulating the biological processes involved in tumour progression. Therefore, preliminary evidence suggests that lifestyle and/or exercise interventions might have therapeutic potential in this growing population of men with prostate cancer. However, several important issues remain unclear: the exact value of different types of lifestyle and exercise medicine interventions during AS; the biological mechanisms of exercise in delaying disease progression; and the influence of the anxieties and distress created by having a diagnosis of cancer without then receiving active treatment. Future studies are required to confirm and expand these findings and determine the relative contributions of each lifestyle component to specific end points and patient outcomes during AS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential mechanisms by which exercise delays the progression of prostate cancer.

Similar content being viewed by others

References

  1. Draisma, G. et al. Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. J. Natl Cancer Inst. 101, 374–383 (2009).

    PubMed  PubMed Central  Google Scholar 

  2. Slomski, A. Expert panel advocates surveillance for men with low-risk prostate cancer. JAMA 307, 133 (2012).

    CAS  PubMed  Google Scholar 

  3. Ischia, J. J. et al. Active surveillance for prostate cancer: an Australian experience. BJU Int. 109, S40–S43 (2012).

    Google Scholar 

  4. Tosoian, J. J. et al. Active surveillance program for prostate cancer: an update of the Johns Hopkins experience. J. Clin. Oncol. 29, 2185–2190 (2011).

    PubMed  Google Scholar 

  5. Cooperberg, M. R., Carroll, P. R. & Klotz, L. Active surveillance for prostate cancer: progress and promise. J. Clin. Oncol. 29, 3669–3776 (2011).

    PubMed  Google Scholar 

  6. Bul, M. et al. Active surveillance for low-risk prostate cancer worldwide: the PRIAS study. Eur. Urol. 63, 597–603 (2013).

    PubMed  Google Scholar 

  7. Klotz, L. et al. Long-term follow-up of a large active surveillance cohort of patients with prostate cancer. J. Clin. Oncol. 33, 272–277 (2015).

    PubMed  Google Scholar 

  8. Tosoian, J. J. et al. Intermediate and longer-term outcomes from a prospective active-surveillance program for favorable-risk prostate cancer. J. Clin. Oncol. 33, 3379–3385 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. Bhindi, B. et al. Obesity is associated with risk of progression for low-risk prostate cancers managed expectantly. Eur. Urol. 66, 841–848 (2014).

    PubMed  Google Scholar 

  10. Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

    CAS  PubMed  Google Scholar 

  11. Ornish, D. et al. Intensive lifestyle changes may affect the progression of prostate cancer. J. Urol. 174, 1065–1069 (2005).

    PubMed  Google Scholar 

  12. Frattaroli, J. et al. Clinical events in prostate cancer lifestyle trial: results from two years of follow-up. Urology 72, 1319–1323 (2008).

    PubMed  Google Scholar 

  13. Ornish, D. et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc. Natl Acad. Sci. USA 105, 8369–8374 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Segal, R. J. et al. Resistance exercise in men receiving androgen deprivation therapy for prostate cancer. J. Clin. Oncol. 21, 1653–1659 (2003).

    PubMed  Google Scholar 

  15. Segal, R. J. et al. Randomized controlled trial of resistance or aerobic exercise in men receiving radiation therapy for prostate cancer. J. Clin. Oncol. 27, 344–351 (2009).

    PubMed  Google Scholar 

  16. Galvao, D. A., Taaffe, D. R., Spry, N., Joseph, D. & Newton, R. U. Combined resistance and aerobic exercise program reverses muscle loss in men undergoing androgen suppression therapy for prostate cancer without bone metastases: a randomized controlled trial. J. Clin. Oncol. 28, 340–347 (2010).

    CAS  PubMed  Google Scholar 

  17. Buffart, L. M. et al. Mediators of the resistance and aerobic exercise intervention effect on physical and general health in men undergoing androgen deprivation therapy for prostate cancer. Cancer 120, 294–301 (2014).

    PubMed  Google Scholar 

  18. Galvao, D. A. et al. A multicentre year-long randomised controlled trial of exercise training targeting physical functioning in men with prostate cancer previously treated with androgen suppression and radiation from TROG 03.04 RADAR. Eur. Urol. 65, 856–864 (2014).

    PubMed  Google Scholar 

  19. Cormie, P. et al. Can supervised exercise prevent treatment toxicity in patients with prostate cancer initiating androgen-deprivation therapy: a randomised controlled trial. BJU Int. 115, 256–266 (2015).

    PubMed  Google Scholar 

  20. Buffart, L. M. et al. The effect, moderators, and mediators of resistance and aerobic exercise on health-related quality of life in older long-term survivors of prostate cancer. Cancer 121, 2821–2830 (2015).

    PubMed  Google Scholar 

  21. Newton, R. U. & Galvao, D. A. Exercise in prevention and management of cancer. Curr. Treat. Options Oncol. 9, 135–146 (2008).

    PubMed  Google Scholar 

  22. Mann, S., Beedie, C. & Jimenez, A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med. 44, 211–221 (2014).

    PubMed  Google Scholar 

  23. Galvao, D. A. et al. Resistance training and reduction of treatment side effects in prostate cancer patients. Med. Sci. Sports Exerc. 38, 2045–2052 (2006).

    PubMed  Google Scholar 

  24. Galvao, D. A., Taaffe, D. R., Spry, N., Joseph, D. & Newton, R. U. Acute versus chronic exposure to androgen suppression for prostate cancer: impact on the exercise response. J. Urol. 186, 1291–1297 (2011).

    CAS  PubMed  Google Scholar 

  25. Cormie, P. et al. Exercise maintains sexual activity in men undergoing androgen suppression for prostate cancer: a randomized controlled trial. Prostate Cancer Prostatic Dis. 16, 170–175 (2013).

    CAS  PubMed  Google Scholar 

  26. Bourke, L. et al. Lifestyle changes for improving disease-specific quality of life in sedentary men on long-term androgen-deprivation therapy for advanced prostate cancer: a randomised controlled trial. Eur. Urol. 65, 865–872 (2014).

    PubMed  Google Scholar 

  27. O'Connor, G. T. et al. Physical exercise and reduced risk of nonfatal myocardial infarction. Am. J. Epidemiol. 142, 1147–1156 (1995).

    CAS  PubMed  Google Scholar 

  28. Helmrich, S. P., Ragland, D. R., Leung, R. W. & Paffenbarger, R. S. Jr. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 325, 147–152 (1991).

    CAS  PubMed  Google Scholar 

  29. Jakicic, J. M. & Otto, A. D. Physical activity considerations for the treatment and prevention of obesity. Am. J. Clin. Nutr. 82 (Suppl.), S226–S229 (2005).

    Google Scholar 

  30. Singh, N. A. et al. A randomized controlled trial of high versus low intensity weight training versus general practitioner care for clinical depression in older adults. J. Gerontol. A. Biol. Sci. Med. Sci. 60, 768–776 (2005).

    PubMed  Google Scholar 

  31. Ettinger, W. H. Jr et al. A randomized trial comparing aerobic exercise and resistance exercise with a health education program in older adults with knee osteoarthritis. The Fitness Arthritis and Seniors Trial (FAST). JAMA 277, 25–31 (1997).

    PubMed  Google Scholar 

  32. Lautenschlager, N. T. et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA 300, 1027–1037 (2008).

    CAS  PubMed  Google Scholar 

  33. Larson, E. B. et al. Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann. Intern. Med. 144, 73–81 (2006).

    PubMed  Google Scholar 

  34. Paffenbarger, R. S. Jr et al. The association of changes in physical-activity level and other lifestyle characteristics with mortality among men. N. Engl. J. Med. 328, 538–545 (1993).

    PubMed  Google Scholar 

  35. Ekelund, L. G. et al. Physical fitness as a predictor of cardiovascular mortality in asymptomatic North American men. The Lipid Research Clinics Mortality Follow-up Study. N. Engl. J. Med. 319, 1379–1384 (1988).

    CAS  PubMed  Google Scholar 

  36. Myers, J. et al. Exercise capacity and mortality among men referred for exercise testing. N. Engl. J. Med. 346, 793–801 (2002).

    PubMed  Google Scholar 

  37. Taaffe, D. R., Daly, R. M., Suominen, H., Galvao, D. A. & Bolam, K. A. in Osteoporosis (eds Marcus, R. et al.) 683–719 (Elsevier Inc., 2013).

    Google Scholar 

  38. Ornish, D. et al. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol. 9, 1048–1057 (2008).

    CAS  PubMed  Google Scholar 

  39. Ornish, D. et al. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 14, 1112–1120 (2013).

    CAS  PubMed  Google Scholar 

  40. Magbanua, M. J. et al. Physical activity and prostate gene expression in men with low-risk prostate cancer. Cancer Causes Control 25, 515–523 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Cao, Y. & Ma, J. Body mass index, prostate cancer-specific mortality, and biochemical recurrence: a systematic review and meta-analysis. Cancer Prev. Res. (Phila.) 4, 486–501 (2011).

    CAS  Google Scholar 

  42. Perez-Hernandez, A. I., Catalan, V., Gomez-Ambrosi, J., Rodriguez, A. & Fruhbeck, G. Mechanisms linking excess adiposity and carcinogenesis promotion. Front. Endocrinol. (Lausanne) 5, 65 (2014).

    Google Scholar 

  43. Atlantis, E. et al. Inverse associations between muscle mass, strength, and the metabolic syndrome. Metabolism 58, 1013–1022 (2009).

    CAS  PubMed  Google Scholar 

  44. Moon, S. S. Low skeletal muscle mass is associated with insulin resistance, diabetes, and metabolic syndrome in the Korean population: the Korea National Health and Nutrition Examination Survey (KNHANES) 2009–2010. Endocr. J. 61, 61–70 (2014).

    CAS  PubMed  Google Scholar 

  45. Buch, A. et al. Muscle function and fat content in relation to sarcopenia, obesity and frailty of old age — an overview. Exp. Gerontol. 76, 25–32 (2016).

    PubMed  Google Scholar 

  46. Wang, Y. et al. Mitogenic and anti-apoptotic effects of insulin in endometrial cancer are phosphatidylinositol 3-kinase/Akt dependent. Gynecol. Oncol. 125, 734–741 (2012).

    CAS  PubMed  Google Scholar 

  47. Djiogue, S. et al. Insulin resistance and cancer: the role of insulin and IGFs. Endocr. Relat. Cancer 20, R1–R17 (2013).

    CAS  PubMed  Google Scholar 

  48. Nishida, Y. et al. Effect of low-intensity aerobic exercise on insulin-like growth factor-I and insulin-like growth factor-binding proteins in healthy men. Int. J. Endocrinol. 2010, 452820 (2010).

    PubMed  PubMed Central  Google Scholar 

  49. Mina, D. S. et al. Exercise effects on adipokines and the IGF axis in men with prostate cancer treated with androgen deprivation: a randomized study. Can. Urol. Assoc. J. 7, E692–E698 (2013).

    PubMed Central  Google Scholar 

  50. van Kruijsdijk, R. C., van der Wall, E. & Visseren, F. L. Obesity and cancer: the role of dysfunctional adipose tissue. Cancer Epidemiol. Biomarkers Prev. 18, 2569–2578 (2009).

    CAS  PubMed  Google Scholar 

  51. Xiang, Y. Z. et al. The association between metabolic syndrome and the risk of prostate cancer, high-grade prostate cancer, advanced prostate cancer, prostate cancer-specific mortality and biochemical recurrence. J. Exp. Clin. Cancer Res. 32, 9 (2013).

    PubMed  PubMed Central  Google Scholar 

  52. Vingren, J. L. et al. Testosterone physiology in resistance exercise and training: the up-stream regulatory elements. Sports Med. 40, 1037–1053 (2010).

    PubMed  Google Scholar 

  53. Ellem, S. J. & Risbridger, G. P. The dual, opposing roles of estrogen in the prostate. Ann. NY Acad. Sci. 1155, 174–186 (2009).

    CAS  PubMed  Google Scholar 

  54. Ellem, S. J. & Risbridger, G. P. Treating prostate cancer: a rationale for targeting local oestrogens. Nat. Rev. Cancer 7, 621–627 (2007).

    CAS  PubMed  Google Scholar 

  55. Risbridger, G. et al. Evidence that epithelial and mesenchymal estrogen receptor-α mediates effects of estrogen on prostatic epithelium. Dev. Biol. 229, 432–442 (2001).

    CAS  PubMed  Google Scholar 

  56. Takizawa, I. et al. Estrogen receptor alpha drives proliferation in PTEN-deficient prostate carcinoma by stimulating survival signaling, MYC expression and altering glucose sensitivity. Oncotarget 6, 604–616 (2015).

    PubMed  Google Scholar 

  57. McPherson, S. J. et al. Estrogen receptor-β activated apoptosis in benign hyperplasia and cancer of the prostate is androgen independent and TNFα mediated. Proc. Natl Acad. Sci. USA 107, 3123–3128 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hussain, S. et al. Estrogen receptor β activation impairs prostatic regeneration by inducing apoptosis in murine and human stem/progenitor enriched cell populations. PLoS ONE 7, e40732 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Nielsen, S. F., Nordestgaard, B. G. & Bojesen, S. E. Statin use and reduced cancer-related mortality. N. Engl. J. Med. 367, 1792–1802 (2012).

    CAS  PubMed  Google Scholar 

  60. Moon, H., Hill, M. M., Roberts, M. J., Gardiner, R. A. & Brown, A. J. Statins: protectors or pretenders in prostate cancer? Trends Endocrinol. Metab. 25, 188–196 (2014).

    CAS  PubMed  Google Scholar 

  61. Mostaghel, E. A., Solomon, K. R., Pelton, K., Freeman, M. R. & Montgomery, R. B. Impact of circulating cholesterol levels on growth and intratumoral androgen concentration of prostate tumors. PLoS ONE 7, e30062 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhuang, L., Kim, J., Adam, R. M., Solomon, K. R. & Freeman, M. R. Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J. Clin. Invest. 115, 959–968 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nassar, Z. D., Hill, M. M., Parton, R. G. & Parat, M. O. Caveola-forming proteins caveolin-1 and PTRF in prostate cancer. Nat. Rev. Urol. 10, 529–536 (2013).

    CAS  PubMed  Google Scholar 

  64. Moon, H. et al. Diet-induced hypercholesterolemia promotes androgen-independent prostate cancer metastasis via IQGAP1 and caveolin-1. Oncotarget 6, 7438–7453 (2015).

    PubMed  PubMed Central  Google Scholar 

  65. Earnest, C. P. et al. Maximal estimated cardiorespiratory fitness, cardiometabolic risk factors, and metabolic syndrome in the aerobics center longitudinal study. Mayo Clin. Proc. 88, 259–270 (2013).

    PubMed  Google Scholar 

  66. Rundqvist, H. et al. Effect of acute exercise on prostate cancer cell growth. PLoS ONE 8, e67579 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Barnard, R. J., Ngo, T. H., Leung, P. S., Aronson, W. J. & Golding, L. A. A low-fat diet and/or strenuous exercise alters the IGF axis in vivo and reduces prostate tumor cell growth in vitro. Prostate 56, 201–206 (2003).

    PubMed  Google Scholar 

  68. Leung, P. S., Aronson, W. J., Ngo, T. H., Golding, L. A. & Barnard, R. J. Exercise alters the IGF axis in vivo and increases p53 protein in prostate tumor cells in vitro. J. Appl. Physiol. (1985) 96, 450–454 (2004).

    Google Scholar 

  69. Fruhbeis, C., Helmig, S., Tug, S., Simon, P. & Kramer-Albers, E. M. Physical exercise induces rapid release of small extracellular vesicles into the circulation. J. Extracell. Vesicles 4, 28239 (2015).

    PubMed  Google Scholar 

  70. Colombo, M., Raposo, G. & Thery, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014).

    CAS  PubMed  Google Scholar 

  71. Tickner, J. A., Urquhart, A. J., Stephenson, S. A., Richard, D. J. & O'Byrne, K. J. Functions and therapeutic roles of exosomes in cancer. Front. Oncol. 4, 127 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. Trock, B. J. Circulating biomarkers for discriminating indolent from aggressive disease in prostate cancer active surveillance. Curr. Opin. Urol. 24, 293–302 (2014).

    PubMed  Google Scholar 

  73. Mucci, L. A. et al. Prospective study of prostate tumor angiogenesis and cancer-specific mortality in the health professionals follow-up study. J. Clin. Oncol. 27, 5627–5633 (2009).

    PubMed  PubMed Central  Google Scholar 

  74. Van Blarigan, E. L. et al. Physical activity and prostate tumor vessel morphology: data from the health professionals follow-up study. Cancer Prev. Res. (Phila.) 8, 962–967 (2015).

    Google Scholar 

  75. Hayes, J. H. et al. Active surveillance compared with initial treatment for men with low-risk prostate cancer: a decision analysis. JAMA 304, 2373–2380 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kazer, M. W., Psutka, S. P., Latini, D. M. & Bailey, D. E. Jr. Psychosocial aspects of active surveillance. Curr. Opin. Urol. 23, 273–277 (2013).

    PubMed  Google Scholar 

  77. Latini, D. M. et al. The relationship between anxiety and time to treatment for patients with prostate cancer on surveillance. J. Urol. 178, 826–831; discussion 831–832 (2007).

    PubMed  Google Scholar 

  78. Bul, M. et al. Radical prostatectomy for low-risk prostate cancer following initial active surveillance: results from a prospective observational study. Eur. Urol. 62, 195–200 (2012).

    PubMed  Google Scholar 

  79. Watts, S. et al. A quantitative analysis of the prevalence of clinical depression and anxiety in patients with prostate cancer undergoing active surveillance. BMJ Open 5, e006674 (2015).

    PubMed  PubMed Central  Google Scholar 

  80. Anderson, J. et al. Anxiety in the management of localised prostate cancer by active surveillance. BJU Int. 114 (Suppl. 1), 55–61 (2014).

    PubMed  Google Scholar 

  81. Bellardita, L. et al. How does active surveillance for prostate cancer affect quality of life? A systematic review. Eur. Urol. 67, 637–645 (2015).

    PubMed  Google Scholar 

  82. Chambers, S. K., Ferguson, M., Gardiner, R. A., Aitken, J. & Occhipinti, S. Intervening to improve psychological outcomes for men with prostate cancer. Psychooncology 22, 1025–1034 (2013).

    PubMed  Google Scholar 

  83. Pickles, T. et al. Psychosocial barriers to active surveillance for the management of early prostate cancer and a strategy for increased acceptance. BJU Int. 100, 544–551 (2007).

    PubMed  Google Scholar 

  84. Osterberg, L. & Blaschke, T. Adherence to medication. N. Engl. J. Med. 353, 487–497 (2005).

    CAS  PubMed  Google Scholar 

  85. Resnick, M. J. et al. Prostate cancer survivorship care guideline: American Society of Clinical Oncology Clinical Practice Guideline endorsement. J. Clin. Oncol. 33, 1078–1085 (2015).

    PubMed  Google Scholar 

  86. Ornish, D. et al. Intensive lifestyle changes for reversal of coronary heart disease. JAMA 280, 2001 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Daniel A. Galvão gratefully acknowledges research funding from a Movember New Directions Development Award obtained through the Prostate Cancer Foundation of Australia's Research Program and a Cancer Council Western Australia Research Fellowship. Suzanne Chambers gratefully acknowledges research funding from an Australian Research Council Professorial Future Fellowship. Michelle Hill gratefully acknowledges research funding from an Australian Research Council Future Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

D.A.G., D.T., F.G., R.T., M.F., M.H., S.C., E.Z. and R.N. researched data for the manuscript. All authors made a substantial contribution to discussions of content. D.A.G., D.T., M.H., S.C., E.Z. and R.N. wrote the manuscript and all authors reviewed and/or edited the manuscript prior to submission.

Corresponding author

Correspondence to Daniel A. Galvão.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galvão, D., Taaffe, D., Spry, N. et al. Enhancing active surveillance of prostate cancer: the potential of exercise medicine. Nat Rev Urol 13, 258–265 (2016). https://doi.org/10.1038/nrurol.2016.46

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2016.46

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing