Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Androgen synthesis in prostate cancer: do all roads lead to Rome?

Key Points

  • Prostate cancers are capable of intratumoural androgen biosynthesis, which is a potential mechanism of castration resistance

  • Three possible competing androgen biosynthesis pathways exist, all of which might enable androgen biosynthesis in the presence of androgen-deprivation therapy

  • Currently, investigations of androgen biosynthesis rely heavily on preclinical models, which generally do not accurately reflect human disease in this setting

  • Identifying the dominant androgen biosynthetic pathway in each patient could have implications for treatment-related decisions

Abstract

The accumulation of high concentrations of signalling androgens within prostate tumours that progress despite use of androgen-deprivation therapy is a clinically important mechanism of the development of castration-resistant prostate cancer. In the past 5 years, data from a number of studies have increased our understanding of the enzymes and substrates involved in intratumoural androgen biosynthesis, and have implicated three competing pathways, which are likely to account for these observations. These pathways ('canonical', 'backdoor' and '5α-dione'), which can all ultimately generate the potent signalling androgen, dihydrotestosterone, involve many of the same enzymes, but differ in terms of substrate preference, reaction sequence and the organs and tissues in which they occur. For this reason, the relative importance of each pathway to the development and progression of prostate cancer remains controversial. In this Review, we describe the current understanding of androgen synthesis and the evidence for its role in castration resistance, and examine the evidence supporting and or rebutting the relevance of each pathway to patients with prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recognized androgen biosynthesis pathways.

Similar content being viewed by others

References

  1. Huggins, C. & Hodges, C. V. Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1, 293–297 (1941).

    CAS  Google Scholar 

  2. James, N. D. et al. Survival with newly diagnosed metastatic prostate cancer in the “docetaxel era”: data from 917 patients in the control arm of the STAMPEDE trial (MRC PR08, CRUK/06/019). Eur. Urol. 67, 1028–1038 (2015).

    Article  PubMed  Google Scholar 

  3. de Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ryan, C. J. et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 368, 138–148 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Scher, H. I. & Sawyers, C. L. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J. Clin. Oncol. 23, 8253–8261 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Mostaghel, E. A. et al. Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res. 67, 5033–5041 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Liu, J., Geller, J., Albert, J. & Kirshner, M. Acute effects of testicular and adrenal cortical blockade on protein synthesis and dihydrotestosterone content of human prostate tissue. J. Clin. Endocrinol. Metab. 61, 129–133 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Geller, J. et al. Relationship between human prostatic epithelial cell protein synthesis and tissue dihydrotestosterone level. Clin. Endocrinol. 26, 155–161 (1987).

    Article  CAS  Google Scholar 

  10. Labrie, F. et al. Combination therapy with flutamide and castration (LHRH agonist or orchiectomy) in advanced prostate cancer: a marked improvement in response and survival. J. Steroid Biochem. 23, 833–841 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Gregory, C. W. et al. Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res. 61, 2892–2898 (2001).

    CAS  PubMed  Google Scholar 

  12. Mohler, J. L. et al. The androgen axis in recurrent prostate cancer. Clin. Cancer Res. 10, 440–448 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Titus, M. A., Schell, M. J., Lih, F. B., Tomer, K. B. & Mohler, J. L. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin. Cancer Res. 11, 4653–4657 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Montgomery, R. B. et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 68, 4447–4454 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Labrie, F. Blockade of testicular and adrenal androgens in prostate cancer treatment. Nat. Rev. Urol. 8, 73–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Midzak, A. S., Chen, H., Papadopoulos, V. & Zirkin, B. R. Leydig cell aging and the mechanisms of reduced testosterone synthesis. Mol. Cell. Endocrinol. 299, 23–31 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Sharifi, N. & Auchus, R. J. Steroid biosynthesis and prostate cancer. Steroids 77, 719–726 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Andersson, S. et al. Molecular genetics and pathophysiology of 17 beta-hydroxysteroid dehydrogenase 3 deficiency. J. Clin. Endocrinol. Metab. 81, 130–136 (1996).

    CAS  PubMed  Google Scholar 

  19. Labrie, F. et al. Gonadotropin-releasing hormone agonists in the treatment of prostate cancer. Endocr. Rev. 26, 361–379 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Labrie, F., Dupont, A. & Belanger, A. Complete androgen blockade for the treatment of prostate cancer. Important Adv. Oncol. 193–217 (1985).

  21. Labrie, F. et al. Comparable amounts of sex steroids are made outside the gonads in men and women: strong lesson for hormone therapy of prostate and breast cancer. J. Steroid Biochem. Mol. Biol. 113, 52–56 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Vermeulen, A., Schelfhout, W. & De Sy, W. Plasma androgen levels after subcapsular orchiectomy or estrogen treatment for prostatic carcinoma. Prostate 3, 115–121 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. Belanger, A., Dupont, A. & Labrie, F. Inhibition of basal and adrenocorticotropin-stimulated plasma levels of adrenal androgens after treatment with an antiandrogen in castrated patients with prostatic cancer. J. Clin. Endocrinol. Metab. 59, 422–426 (1984).

    Article  CAS  PubMed  Google Scholar 

  24. Nishii, M. et al. Luteinizing hormone (LH)-releasing hormone agonist reduces serum adrenal androgen levels in prostate cancer patients: implications for the effect of LH on the adrenal glands. J. Androl. 33, 1233–1238 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Bruchovsky, N. & Wilson, J. D. The conversion of testosterone to 5α-androstan-17β-ol-3-one by rat prostate in vivo and in vitro. J. Biol. Chem. 243, 2012–2021 (1968).

    CAS  PubMed  Google Scholar 

  26. Labrie, F., Luu-The, V., Labrie, C. & Simard, J. DHEA and its transformation into androgens and estrogens in peripheral target tissues: intracrinology. Front. Neuroendocrinol. 22, 185–212 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Zaslavsky, A. B. et al. Platelet-synthesized testosterone in men with prostate cancer induces androgen receptor signaling. Neoplasia 17, 490–496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Labrie, F. et al. Androgen glucuronides, instead of testosterone, as the new markers of androgenic activity in women. J. Steroid Biochem. Mol. Biol. 99, 182–188 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Attard, G. et al. Clinical and biochemical consequences of CYP17A1 inhibition with abiraterone given with and without exogenous glucocorticoids in castrate men with advanced prostate cancer. J. Clin. Endocrinol. Metab. 97, 507–516 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Locke, J. A. et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res. 68, 6407–6415 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Fankhauser, M. et al. Canonical androstenedione reduction is the predominant source of signaling androgens in hormone-refractory prostate cancer. Clin. Cancer Res. 20, 5547–5557 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Chang, K. H. et al. Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer. Proc. Natl Acad. Sci. USA 108, 13728–13733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Penning, T. M. et al. Human 3α-hydroxysteroid dehydrogenase isoforms (AKR1C1–AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem. J. 351, 67–77 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mostaghel, E. A. et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin. Cancer Res. 17, 5913–5925 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Weerden, W. M., Bierings, H. G., van Steenbrugge, G. J., de Jong, F. H. & Schroder, F. H. Adrenal glands of mouse and rat do not synthesize androgens. Life Sci. 50, 857–861 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Perkins, L. M. & Payne, A. H. Quantification of P450scc, 45017α, and iron sulfur protein reductase in Leydig cells and adrenals of inbred strains of mice. Endocrinology 123, 2675–2682 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Brock, B. J. & Waterman, M. R. Biochemical differences between rat and human cytochrome P450c17 support the different steroidogenic needs of these two species. Biochemistry 38, 1598–1606 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Luu-The, V., Pelletier, G. & Labrie, F. Quantitative appreciation of steroidogenic gene expression in mouse tissues: new roles for type 2 5α-reductase, 20α-hydroxysteroid dehydrogenase and estrogen sulfotransferase. J. Steroid Biochem. Mol. Biol. 93, 269–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Swerdloff, R. S., Wang, C. & Bhasin, S. Developments in the control of testicular function. Baillieres Clin. Endocrinol. Metab. 6, 451–483 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Dufau, M. L. et al. Regulation of androgen synthesis: the late steroidogenic pathway. Steroids 62, 128–132 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Payne, A. H., Youngblood, G. L., Sha, L., Burgos-Trinidad, M. & Hammond, S. H. Hormonal regulation of steroidogenic enzyme gene expression in Leydig cells. J. Steroid Biochem. Mol. Biol. 43, 895–906 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Hanukoglu, I. Steroidogenic enzymes: structure, function, and role in regulation of steroid hormone biosynthesis. J. Steroid Biochem. Mol. Biol. 43, 779–804 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Grist, E., de Bono, J. S. & Attard, G. Targeting extra-gonadal androgens in castration-resistant prostate cancer. J. Steroid Biochem. Mol. Biol. 145, 157–163 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Miller, W. L. & Auchus, R. J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 32, 81–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Sharifi, N. Minireview: androgen metabolism in castration-resistant prostate cancer. Mol. Endocrinol. 27, 708–714 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nakamura, Y. et al. Type 5 17β-hydroxysteroid dehydrogenase (AKR1C3) contributes to testosterone production in the adrenal reticularis. J. Clin. Endocrinol. Metab. 94, 2192–2198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stanbrough, M. et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res. 66, 2815–2825 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Armandari, I., Hamid, A. R., Verhaegh, G. & Schalken, J. Intratumoral steroidogenesis in castration-resistant prostate cancer: a target for therapy. Prostate Int. 2, 105–113 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Knudsen, K. E. Hormone whodunit: clues for solving the case of intratumor androgen production. Clin. Cancer Res. 20, 5343–5345 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wilson, J. D. et al. 5α-androstane-3α, 17β-diol is formed in tammar wallaby pouch young testes by a pathway involving 5α-pregnane-3α, 17α-diol-20-one as a key intermediate. Endocrinology 144, 575–580 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Auchus, R. J. The backdoor pathway to dihydrotestosterone. Trends Endocrinol. Metab. 15, 432–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Penning, T. M., Bauman, D. R., Jin, Y. & Rizner, T. L. Identification of the molecular switch that regulates access of 5α-DHT to the androgen receptor. Mol. Cell. Endocrinol. 265–266, 77–82 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Bauman, D. R., Steckelbroeck, S., Williams, M. V., Peehl, D. M. & Penning, T. M. Identification of the major oxidative 3α-hydroxysteroid dehydrogenase in human prostate that converts 5α-androstane-3α, 17β-diol to 5α-dihydrotestosterone: a potential therapeutic target for androgen-dependent disease. Mol. Endocrinol. 20, 444–458 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Mohler, J. L. et al. Activation of the androgen receptor by intratumoral bioconversion of androstanediol to dihydrotestosterone in prostate cancer. Cancer Res. 71, 1486–1496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shaw, G. et al. Prostate formation in a marsupial is mediated by the testicular androgen 5α-androstane-3α, 17β-diol. Proc. Natl Acad. Sci. USA 97, 12256–12259 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Locke, J. A. et al. Steroidogenesis inhibitors alter but do not eliminate androgen synthesis mechanisms during progression to castration-resistance in LNCaP prostate xenografts. J. Steroid Biochem. Mol. Biol. 115, 126–136 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Kumagai, J. et al. Intratumoral conversion of adrenal androgen precursors drives androgen receptor-activated cell growth in prostate cancer more potently than de novo steroidogenesis. Prostate 73, 1636–1650 (2013).

    CAS  PubMed  Google Scholar 

  58. Hofland, J. et al. Evidence of limited contributions for intratumoral steroidogenesis in prostate cancer. Cancer Res. 70, 1256–1264 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Wu, Y. et al. Prostate cancer cells differ in testosterone accumulation, dihydrotestosterone conversion, and androgen receptor signaling response to steroid 5α-reductase inhibitors. Prostate 73, 1470–1482 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sakai, M., Martinez-Arguelles, D. B., Aprikian, A. G., Magliocco, A. M. & Papadopoulos, V. De novo steroid biosynthesis in human prostate cell lines and biopsies. Prostate 76, 575–587 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Efstathiou, E. et al. Molecular characterization of enzalutamide-treated bone metastatic castration-resistant prostate cancer. Eur. Urol. 67, 53–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Jernberg, E. et al. Characterization of prostate cancer bone metastases according to expression levels of steroidogenic enzymes and androgen receptor splice variants. PLoS ONE 8, e77407 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Campbell, T. J., Tindall, D. J. & Figg, W. D. Dihydrotestosterone synthesis from adrenal precursors does not involve testosterone in castration-resistant prostate cancer. Cancer Biol. Ther. 13, 237–238 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Titus, M. A. et al. Steroid 5α-reductase isozymes I and II in recurrent prostate cancer. Clin. Cancer Res. 11, 4365–4371 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Thomas, L. N. et al. Differential alterations in 5α-reductase type 1 and type 2 levels during development and progression of prostate cancer. Prostate 63, 231–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Knudsen, K. E. & Penning, T. M. Partners in crime: deregulation of AR activity and androgen synthesis in prostate cancer. Trends Endocrinol. Metab. 21, 315–324 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jez, J. M., Flynn, T. G. & Penning, T. M. A new nomenclature for the aldo-keto reductase superfamily. Biochem. Pharmacol. 54, 639–647 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Attard, G. et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J. Clin. Oncol. 26, 4563–4571 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Ryan, C. J., Molina, A. & Griffin, T. Abiraterone in metastatic prostate cancer. N. Engl. J. Med. 368, 1458–1459 (2013).

    CAS  PubMed  Google Scholar 

  70. Chen, E. J. et al. Abiraterone treatment in castration-resistant prostate cancer selects for progesterone responsive mutant androgen receptors. Clin. Cancer Res. 21, 1273–1280 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Penning, T. M. Mechanisms of drug resistance that target the androgen axis in castration resistant prostate cancer (CRPC). J. Steroid Biochem. Mol. Biol. 153, 105–113 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Arakawa, H. et al. Enhanced expression of organic anion transporting polypeptides (OATPs) in androgen receptor-positive prostate cancer cells: possible role of OATP1A2 in adaptive cell growth under androgen-depleted conditions. Biochem. Pharmacol. 84, 1070–1077 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Thomas, M. P. & Potter, B. V. Estrogen O-sulfamates and their analogues: clinical steroid sulfatase inhibitors with broad potential. J. Steroid Biochem. Mol. Biol. 153, 160–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Thompson, I. M. et al. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med. 349, 215–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Wilt, T. J., MacDonald, R., Hagerty, K., Schellhammer, P. & Kramer, B. S. Five-alpha-reductase Inhibitors for prostate cancer prevention. Cochrane Database Syst. Rev. 2, CD007091 (2008).

    Google Scholar 

  76. Walsh, P. C. Chemoprevention of prostate cancer. N. Engl. J. Med. 362, 1237–1238 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Andriole, G. L. et al. Effect of dutasteride on the risk of prostate cancer. N. Engl. J. Med. 362, 1192–1202 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Opoku-Acheampong, A. B., Unis, D., Henningson, J. N., Beck, A. P. & Lindshield, B. L. Preventive and therapeutic efficacy of finasteride and dutasteride in TRAMP mice. PLoS ONE 8, e77738 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shah, S. K. et al. Phase II study of dutasteride for recurrent prostate cancer during androgen deprivation therapy. J. Urol. 181, 621–626 (2009).

    Article  PubMed  Google Scholar 

  80. Chu, F. M. et al. A randomised, double-blind study comparing the addition of bicalutamide with or without dutasteride to GnRH analogue therapy in men with non-metastatic castrate-resistant prostate cancer. Eur. J. Cancer 51, 1555–1569 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Sartor, O. et al. Activity of dutasteride plus ketoconazole in castration-refractory prostate cancer after progression on ketoconazole alone. Clin. Genitourin. Cancer 7, E90–E92 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Taplin, M. E. et al. Phase II study of androgen synthesis inhibition with ketoconazole, hydrocortisone, and dutasteride in asymptomatic castration-resistant prostate cancer. Clin. Cancer Res. 15, 7099–7105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kikuchi, A. et al. In vitro and in vivo characterisation of ASP9521: a novel, selective, orally bioavailable inhibitor of 17β-hydroxysteroid dehydrogenase type 5 (17βHSD5; AKR1C3). Invest. New Drugs 32, 860–870 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Loriot, Y. et al. Safety, tolerability and anti-tumour activity of the androgen biosynthesis inhibitor ASP9521 in patients with metastatic castration-resistant prostate cancer: multi-centre phase I/II study. Invest. New Drugs 32, 995–1004 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Kawabe, M. et al. Decrease of prostaglandin E2 and 5-bromo-2′-deoxyuridine labeling but not prostate tumor development by indomethacin treatment of rats given 3,2′-dimethyl-4-aminobiphenyl and testosterone propionate. Jpn. J. Cancer Res. 88, 350–355 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hamid, A. R. et al. Aldo-keto reductase family 1 member C3 (AKR1C3) is a biomarker and therapeutic target for castration-resistant prostate cancer. Mol. Med. 18, 1449–1455 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  87. Liedtke, A. J. et al. Development of potent and selective indomethacin analogues for the inhibition of AKR1C3 (type 5 17β-hydroxysteroid dehydrogenase/prostaglandin F synthase) in castrate-resistant prostate cancer. J. Med. Chem. 56, 2429–2446 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Evaul, K., Li, R., Papari-Zareei, M., Auchus, R. J. & Sharifi, N. 3β-hydroxysteroid dehydrogenase is a possible pharmacological target in the treatment of castration-resistant prostate cancer. Endocrinology 151, 3514–3520 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Chang, K. H. et al. A gain-of-function mutation in DHT synthesis in castration-resistant prostate cancer. Cell 154, 1074–1084 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wu, G. et al. Variant allele of HSD3B1 increases progression to castration-resistant prostate cancer. Prostate 75, 777–782 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Takizawa, I. et al. Trilostane, an inhibitor of 3β-hydroxysteroid dehydrogenase, has an agonistic activity on androgen receptor in human prostate cancer cells. Cancer Lett. 297, 226–230 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Geldof, A. A., Meulenbroek, M. F., Dijkstra, I., Bohlken, S. & Rao, B. R. Consideration of the use of 17 beta-N,N-diethylcarbamoyl-4-methyl-4-aza-5- alpha-androstan-3-one (4MA), a 5 alpha-reductase inhibitor, in prostate cancer therapy. J. Cancer Res. Clin. Oncol. 118, 50–55 (1992).

    Article  CAS  PubMed  Google Scholar 

  93. Li, R. et al. Abiraterone inhibits 3β-hydroxysteroid dehydrogenase: a rationale for increasing drug exposure in castration-resistant prostate cancer. Clin. Cancer Res. 18, 3571–3579 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Li, Z. et al. Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer. Nature 523, 347–351 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liden, M. & Eriksson, U. Understanding retinol metabolism: structure and function of retinol dehydrogenases. J. Biol. Chem. 281, 13001–13004 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Yamamoto, H. et al. Mutations in the gene encoding 11-cis retinol dehydrogenase cause delayed dark adaptation and fundus albipunctatus. Nat. Genet. 22, 188–191 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Mitsiades, N. et al. Distinct patterns of dysregulated expression of enzymes involved in androgen synthesis and metabolism in metastatic prostate cancer tumors. Cancer Res. 72, 6142–6152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Avila, D. M., Fuqua, S. A., George, F. W. & McPhaul, M. J. Identification of genes expressed in the rat prostate that are modulated differently by castration and Finasteride treatment. J. Endocrinol. 159, 403–411 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Hsiao, P. W., Thin, T. H., Lin, D. L. & Chang, C. Differential regulation of testosterone versus 5α-dihydrotestosterone by selective androgen response elements. Mol. Cell. Biochem. 206, 169–175 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Zhang, A., Zhang, J., Plymate, S. & Mostaghel, E. A. Classical and non-classical roles for pre-receptor control of DHT metabolism in prostate cancer progression. Horm. Cancer 7, 104–113 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pfeiffer, M. J., Smit, F. P., Sedelaar, J. P. & Schalken, J. A. Steroidogenic enzymes and stem cell markers are upregulated during androgen deprivation in prostate cancer. Mol. Med. 17, 657–664 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Australian Prostate Cancer Centre Epworth is supported by the Australian Government as represented by the Department of Health and Ageing. N.M.C. is supported by a David Bickart Clinician Research Fellowship from the Faculty of Medicine, Dentistry and Health Sciences at the University of Melbourne.

Author information

Authors and Affiliations

Authors

Contributions

R.S. and P.J.M. researched data for this article, all authors made a substantial contribution to discussions of content, R.S. and N.M.C. wrote the manuscript and N.M.C. and C.M.H. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Niall M. Corcoran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stuchbery, R., McCoy, P., Hovens, C. et al. Androgen synthesis in prostate cancer: do all roads lead to Rome?. Nat Rev Urol 14, 49–58 (2017). https://doi.org/10.1038/nrurol.2016.221

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2016.221

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer