Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Integration and utilization of modern technologies in nephrolithiasis research

Abstract

Nephrolithiasis, or stones, is one of the oldest urological diseases, with descriptions and treatment strategies dating back to ancient times. Despite the enormous number of patients affected by stones, a surprising lack of conceptual understanding of many aspects of this disease still exists. This lack of understanding includes mechanisms of stone formation and retention, the clinical relevance of different stone compositions and that of formation patterns and associated pathological features to the overall course of the condition. Fortunately, a number of new tools are available to assist in answering such questions. New renal endoscopes enable kidney visualization in much higher definition than was previously possible, while micro-CT imaging is the optimal technique for assessment of stone microstructure and mineral composition in a nondestructive fashion. Together, these tools have the potential to provide novel insights into the aetiology of stone formation that might unlock new prevention and treatment strategies, and enable more effective management of patients with nephrolithiasis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Fibre-optic versus digital ureteroscopic images.
Figure 2: Digital ureteroscopic image of a classic renal papilla.
Figure 3: Micro-CT imaging and reconstruction of a stone fragment.
Figure 4: Renal mapping of a right kidney using high-definition renal endoscopy.
Figure 5: Common renal papillary abnormalities observed in stone formers.
Figure 6: Comparisons of stones anchored to papillary tissue in two different ways.
Figure 7: Direct comparison of reconstructions of stones formed on a Randall plaque or on a ductal plug.

References

  1. 1

    Kirkali, Z., Rasooly, R., Star, R. A. & Rodgers, G. P. Urinary Stone disease: progress, status, and needs. Urology 86, 651–653 (2015).

    PubMed  PubMed Central  Google Scholar 

  2. 2

    Pearle, M. S. et al. Medical management of kidney stones: AUA guideline. J. Urol. 192, 316–324 (2014).

    PubMed  Google Scholar 

  3. 3

    Turk, C. et al. EAU guidelines on interventional treatment for urolithiasis. Eur. Urol. 69, 475–482 (2015).

    PubMed  Google Scholar 

  4. 4

    Cloutier, J., Villa, L., Traxer, O. & Daudon, M. Kidney stone analysis: “Give me your stone, I will tell you who you are!”. World J. Urol. 33, 157–169 (2015).

    PubMed  Google Scholar 

  5. 5

    Sharma, R. N., Shah, I., Gupta, S., Sharma, P. & Beigh, A. A. Thermogravimetric analysis of urinary stones. Br. J. Urol. 64, 564–566 (1989).

    CAS  PubMed  Google Scholar 

  6. 6

    Fazil Marickar, Y. M., Lekshmi, P. R., Varma, L. & Koshy, P. EDAX versus FTIR in mixed stones. Urol. Res. 37, 271–276 (2009).

    CAS  PubMed  Google Scholar 

  7. 7

    Bastian, P. J., Lorken, M., Euler, H., Lummen, G. & Bastian, H. P. [Results of the evaluation of 85,337 urinary stone analyses]. Aktuelle Urol. 39, 298–304 (in German) (2008).

    CAS  PubMed  Google Scholar 

  8. 8

    Daudon, M., Protat, M. F., Reveillaud, R. J. & Jaeschke-Boyer, H. Infrared spectrometry and Raman microprobe in the analysis of urinary calculi. Kidney Int. 23, 842–850 (1983).

    CAS  PubMed  Google Scholar 

  9. 9

    Daudon, M. et al. Sex- and age-related composition of 10 617 calculi analyzed by infrared spectroscopy. Urol. Res. 23, 319–326 (1995).

    CAS  PubMed  Google Scholar 

  10. 10

    Krambeck, A. E. et al. Inaccurate reporting of mineral composition by commercial stone analysis laboratories: implications for infection and metabolic stones. J. Urol. 184, 1543–1549 (2010).

    PubMed  PubMed Central  Google Scholar 

  11. 11

    McGuire, B. B. et al. Predicting patients with inadequate 24- or 48-hour urine collections at time of metabolic stone evaluation. J. Endourol. 29, 730–735 (2015).

    PubMed  Google Scholar 

  12. 12

    Healy, K. A., Hubosky, S. G. & Bagley, D. H. 24-hour urine collection in the metabolic evaluation of stone formers: is one study adequate? J. Endourol. 27, 374–378 (2013).

    PubMed  Google Scholar 

  13. 13

    Castle, S. M., Cooperberg, M. R., Sadetsky, N., Eisner, B. H. & Stoller, M. L. Adequacy of a single 24-hour urine collection for metabolic evaluation of recurrent nephrolithiasis. J. Urol. 184, 579–583 (2010).

    CAS  PubMed  Google Scholar 

  14. 14

    Pak, C. Y., Peterson, R. & Poindexter, J. R. Adequacy of a single stone risk analysis in the medical evaluation of urolithiasis. J. Urol. 165, 378–381 (2001).

    CAS  PubMed  Google Scholar 

  15. 15

    Parks, J. H., Goldfisher, E., Asplin, J. R. & Coe, F. L. A single 24-hour urine collection is inadequate for the medical evaluation of nephrolithiasis. J. Urol. 167, 1607–1612 (2002).

    PubMed  Google Scholar 

  16. 16

    Nayan, M., Elkoushy, M. A. & Andonian, S. Variations between two 24-hour urine collections in patients presenting to a tertiary stone clinic. Can. Urol. Assoc. J. 6, 30–33 (2012).

    PubMed  PubMed Central  Google Scholar 

  17. 17

    Evan, A. P., Lingeman, J. E., McAteer, J. A. & Williams, J. C. Jr. Introduction to special issue on the Proceedings of the 3rd International Urolithiasis Research Symposium held in Indianapolis. Urol. Res. 38, 237 (2010).

    PubMed  Google Scholar 

  18. 18

    Evan, A. P., Worcester, E. M., Coe, F. L., Williams, J. Jr & Lingeman, J. E. Mechanisms of human kidney stone formation. Urolithiasis 43 (Suppl. 1), 19–32 (2015).

    PubMed  Google Scholar 

  19. 19

    Coe, F. L., Evan, A. P., Lingeman, J. E. & Worcester, E. M. Plaque and deposits in nine human stone diseases. Urol. Res. 38, 239–247 (2010).

    PubMed  PubMed Central  Google Scholar 

  20. 20

    Rassweiler, J., Rassweiler, M. C. & Klein, J. New technology in ureteroscopy and percutaneous nephrolithotomy. Curr. Opin. Urol. 26, 95–106 (2016).

    PubMed  Google Scholar 

  21. 21

    Borofsky, M. S. & Shah, O. Advances in ureteroscopy. Urol. Clin. North Am. 40, 67–78 (2013).

    PubMed  Google Scholar 

  22. 22

    Andonian, S., Okeke, Z. & Smith, A. D. Digital ureteroscopy: the next step. J. Endourol. 22, 603–606 (2008).

    PubMed  Google Scholar 

  23. 23

    Humphreys, M. R. et al. A new world revealed: early experience with digital ureteroscopy. J. Urol. 179, 970–975 (2008).

    PubMed  Google Scholar 

  24. 24

    Zilberman, D. E. et al. The digital flexible ureteroscope: in vitro assessment of optical characteristics. J. Endourol. 25, 519–522 (2011).

    PubMed  Google Scholar 

  25. 25

    Flachenecker, G. & Fastenmeier, K. High frequency current effects during transurethral resection. J. Urol. 122, 336–341 (1979).

    CAS  PubMed  Google Scholar 

  26. 26

    Somani, B. K., Al-Qahtani, S. M., de Medina, S. D. & Traxer, O. Outcomes of flexible ureterorenoscopy and laser fragmentation for renal stones: comparison between digital and conventional ureteroscope. Urology 82, 1017–1019 (2013).

    PubMed  PubMed Central  Google Scholar 

  27. 27

    Multescu, R., Geavlete, B., Georgescu, D. & Geavlete, P. Improved durability of flex-Xc digital flexible ureteroscope: how long can you expect it to last? Urology 84, 32–35 (2014).

    PubMed  Google Scholar 

  28. 28

    Borofsky, M. S. et al. A proposed grading system to standardize the description of renal papillary appearance at the time of endoscopy in patients with nephrolithiasis. J. Endourol. 30, 122–127 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. 29

    Low, R. K. & Stoller, M. L. Endoscopic mapping of renal papillae for Randall's plaques in patients with urinary stone disease. J. Urol. 158, 2062–2064 (1997).

    CAS  PubMed  Google Scholar 

  30. 30

    Linnes, M. P. et al. Phenotypic characterization of kidney stone formers by endoscopic and histological quantification of intrarenal calcification. Kidney Int. 84, 818–825 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Evan, A., Lingeman, J., Coe, F. L. & Worcester, E. Randall's plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int. 69, 1313–1318 (2006).

    CAS  PubMed  Google Scholar 

  32. 32

    Miller, N. L. et al. A formal test of the hypothesis that idiopathic calcium oxalate stones grow on Randall's plaque. BJU Int. 103, 966–971 (2009).

    CAS  PubMed  Google Scholar 

  33. 33

    Matlaga, B. R. et al. Endoscopic evidence of calculus attachment to Randall's plaque. J. Urol. 175, 1720–1724; discussion 1724 (2006).

    PubMed  Google Scholar 

  34. 34

    Jaeger, C. D. et al. Endoscopic and pathologic characterization of papillary architecture in struvite stone formers. Urology 90, 39–44 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. 35

    Viers, B. R. et al. Endoscopic and histologic findings in a cohort of uric acid and calcium oxalate stone formers. Urology 85, 771–776 (2015).

    PubMed  PubMed Central  Google Scholar 

  36. 36

    Evan, A. E. et al. Histopathology and surgical anatomy of patients with primary hyperparathyroidism and calcium phosphate stones. Kidney Int. 74, 223–229 (2008).

    CAS  PubMed  Google Scholar 

  37. 37

    Evan, A. P. et al. Renal intratubular crystals and hyaluronan staining occur in stone formers with bypass surgery but not with idiopathic calcium oxalate stones. Anat. Rec. 291, 325–334 (2008).

    Google Scholar 

  38. 38

    Evan, A. P. et al. Renal crystal deposits and histopathology in patients with cystine stones. Kidney Int. 69, 2227–2235 (2006).

    CAS  PubMed  Google Scholar 

  39. 39

    Evan, A. P. et al. Renal histopathology of stone-forming patients with distal renal tubular acidosis. Kidney Int. 71, 795–801 (2007).

    CAS  PubMed  Google Scholar 

  40. 40

    Evan, A. P. et al. Intra-tubular deposits, urine and stone composition are divergent in patients with ileostomy. Kidney Int. 76, 1081–1088 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Evan, A. P. et al. Randall's plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J. Clin. Invest. 111, 607–616 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Evan, A. P. et al. Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney Int. 67, 576–591 (2005).

    CAS  PubMed  Google Scholar 

  43. 43

    Evan, A. P. et al. Renal histopathology and crystal deposits in patients with small bowel resection and calcium oxalate stone disease. Kidney Int. 78, 310–317 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Evan, A. P. et al. Contrasting histopathology and crystal deposits in kidneys of idiopathic stone formers who produce hydroxy apatite, brushite, or calcium oxalate stones. Anat. Rec. 297, 731–748 (2014).

    CAS  Google Scholar 

  45. 45

    Evan, A. P. et al. Biopsy proven medullary sponge kidney: clinical findings, histopathology, and role of osteogenesis in stone and plaque formation. Anat. Rec. 298, 865–877 (2015).

    Google Scholar 

  46. 46

    Randall, A. The origin and growth of renal calculi. Ann. Surg. 105, 1009–1027 (1937).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Kim, S. C. et al. Stone formation is proportional to papillary surface coverage by Randall's plaque. J. Urol. 173, 117–119; discussion 119 (2005).

    CAS  PubMed  Google Scholar 

  48. 48

    Williams, J. C. Jr, McAteer, J. A., Evan, A. P. & Lingeman, J. E. Micro-computed tomography for analysis of urinary calculi. Urol. Res. 38, 477–484 (2010).

    PubMed  Google Scholar 

  49. 49

    Qu, M. et al. Dual-energy dual-source CT with additional spectral filtration can improve the differentiation of non-uric acid renal stones: an ex vivo phantom study. Am. J. Roentgenol. 196, 1279–1287 (2011).

    Google Scholar 

  50. 50

    Zarse, C. A. et al. Nondestructive analysis of urinary calculi using micro computed tomography. BMC Urol. 4, 15 (2004).

    PubMed  PubMed Central  Google Scholar 

  51. 51

    Pramanik, R., Asplin, J. R., Jackson, M. E. & Williams, J. C. Jr. Protein content of human apatite and brushite kidney stones: significant correlation with morphologic measures. Urol. Res. 36, 251–258 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Zarse, C. A. et al. Helical computed tomography accurately reports urinary stone composition using attenuation values: in vitro verification using high-resolution micro-computed tomography calibrated to fourier transform infrared microspectroscopy. Urology 63, 828–833 (2004).

    PubMed  Google Scholar 

  53. 53

    Williams, J. C. et al. Progress in the use of helical CT for imaging urinary calculi. J. Endourol. 18, 937–941 (2004).

    PubMed  Google Scholar 

  54. 54

    Kuo, R. L. et al. Endoscopic renal papillary biopsies: a tissue retrieval technique for histological studies in patients with nephrolithiasis. J. Urol. 170, 2186–2189 (2003).

    PubMed  Google Scholar 

  55. 55

    Evan, A. P., Lingeman, J., Coe, F. L. & Worcester, E. Randall's plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int. 69, 1313–1318 (2006).

    CAS  PubMed  Google Scholar 

  56. 56

    Williams, J. C. Jr & McAteer, J. A. Retention and growth of urinary stones—insights from imaging. J. Nephrol. 26, 25–31 (2013).

    PubMed  PubMed Central  Google Scholar 

  57. 57

    Borofsky, M. S. & Lingeman, J. E. The role of open and laparoscopic stone surgery in the modern era of endourology. Nat. Rev. Urol. 12, 392–400 (2015).

    PubMed  Google Scholar 

  58. 58

    Borofsky, M. S. et al. A grading system for papillary injury in stone formers. In 33rd World Congress of Endourology (London, 2015).

    Google Scholar 

  59. 59

    Grapsa, D. & Ekaterini, P. Standardized categorical reporting of cytopathology results: the strengths and weaknesses of a constantly evolving and expanding system. Diagnost. Cytopathol. 41, 917–921 (2013).

    Google Scholar 

  60. 60

    Pancorbo-Hidalgo, P.L., Garcia-Fernandez, F.P., Lopez-Medina, I.M. & Alvarez-Nieto, C. Risk assessment scales for pressure ulcer prevention: a systematic review. J. Adv. Nurs. 54, 94–110 (2006).

    PubMed  Google Scholar 

  61. 61

    Ajuied, A. et al. Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: a systematic review and meta-analysis. Am. J. Sports Med. 42, 2242–2252 (2014).

    PubMed  Google Scholar 

  62. 62

    McGuire, B. B. & Fitzpatrick, J. M. The diagnosis and management of complex renal cysts. Curr. Opin. Urol. 20, 349–354 (2010).

    PubMed  Google Scholar 

  63. 63

    Shenfeld, O. Z. & Gnessin, E. Management of urogenital trauma: state of the art. Curr. Opin. Urol. 21, 449–454 (2011).

    PubMed  Google Scholar 

  64. 64

    Williams, J. C. et al. Micro-CT imaging of Randall's plaques. Urolithiasis 43 (Suppl. 1), 13–17 (2015).

    PubMed  Google Scholar 

  65. 65

    Cifuentes Delatte, L., Hidalgo, A., Bellanato, J. & Santos, M. in Urinary Calculi: Recent Advances in Aetiology, Stone Structure and Treatment (eds Cifuentes Delatte, L., Rapado, A. & Hodgkinson, A.) 220–230 (S. Karger, 1973).

    Google Scholar 

  66. 66

    Schubert, G. & Brien, G. Crystallographic investigations of urinary calcium oxalate calculi. Int. Urol. Nephrol. 13, 249–260 (1981).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.C.W., A.P.E. and J.E.L. gratefully acknowledge funding from the National Institutes of Health P01 DK056788/DK/NIDDK NIH HHS/United States.

Author information

Affiliations

Authors

Contributions

All authors made substantial contributions to researching data for this article, discussions of content, writing and editing and reviewing of this manuscript prior to submission.

Corresponding author

Correspondence to James E. Lingeman.

Ethics declarations

Competing interests

J.E.L. is the owner and scientific director of Beck Analytical and has acted as a consultant for Boston Scientific. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borofsky, M., Dauw, C., Cohen, A. et al. Integration and utilization of modern technologies in nephrolithiasis research. Nat Rev Urol 13, 549–557 (2016). https://doi.org/10.1038/nrurol.2016.148

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing