Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Radiotherapy for high-risk prostate cancer

Key Points

  • Radiation therapy for high-risk prostate cancer provides an overall survival benefit compared with conservative management with androgen deprivation therapy (ADT) alone

  • The addition of long-term (2–3 years) ADT to radiation therapy for high-risk prostate cancer provides an overall survival benefit

  • Dose-escalated radiation therapy improves cancer control compared with conventional radiation doses

  • Ongoing research is evaluating hypofractionation, whole-pelvic radiotherapy, and combinations of newer hormonal agents with radiation as potential ways to further improve patient outcomes in high-risk prostate cancer

Abstract

The combination of radiation treatment and long-term androgen deprivation therapy (ADT) has been shown in multiple clinical trials to prolong overall survival in men with high-risk prostate cancer compared with either treatment alone. New radiation technologies enable the safe delivery of high radiation doses that improve cancer control compared with lower radiation doses. Based on the results of multiple randomized trials, clinical practice guidelines for high-risk prostate cancer recommend total radiation doses of at least 75.6 Gy, with long-term (2–3 years) ADT. Ongoing research into hypofractionated radiation treatment, whole-pelvic radiation, and combinations of radiation with novel hormonal agents could further improve cancer control and survival outcomes for patients with high-risk prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mohler, J. L. et al. Prostate cancer, version 2.2014. J. Natl Compr. Canc. Netw. 12, 686–718 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Widmark, A. et al. Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): an open randomised phase III trial. Lancet 373, 301–308 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Warde, P. et al. Combined androgen deprivation therapy and radiation therapy for locally advanced prostate cancer: a randomised, phase 3 trial. Lancet 378, 2104–2111 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Studer, U. E. et al. Immediate or deferred androgen deprivation for patients with prostate cancer not suitable for local treatment with curative intent: European Organisation for Research and Treatment of Cancer (EORTC) Trial 30891. J. Clin. Oncol. 24, 1868–1876 (2006).

    Article  PubMed  Google Scholar 

  5. Lu-Yao, G. L. et al. Survival following primary androgen deprivation therapy among men with localized prostate cancer. JAMA 300, 173–181 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thompson, I. et al. Guideline for the management of clinically localized prostate cancer: 2007 update. J. Urol. 177, 2106–2131 (2007).

    Article  PubMed  Google Scholar 

  7. Waxman, J. et al. Importance of early tumour exacerbation in patients treated with long acting analogues of gonadotrophin releasing hormone for advanced prostatic cancer. Br. Med. J. (Clin. Res. Ed.) 291, 1387–1388 (1985).

    Article  CAS  Google Scholar 

  8. Conn, P. M. & Crowley, W. F. Jr. Gonadotropin-releasing hormone and its analogues. N. Engl. J. Med. 324, 93–103 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. D'Amico, A. V. et al. 6-month androgen suppression plus radiation therapy vs radiation therapy alone for patients with clinically localized prostate cancer: a randomized controlled trial. JAMA 292, 821–827 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Laverdière, J. et al. The efficacy and sequencing of a short course of androgen suppression on freedom from biochemical failure when administered with radiation therapy for T2-T3 prostate cancer. J. Urol. 171, 1137–1140 (2004).

    Article  PubMed  CAS  Google Scholar 

  11. Denham, J. W. et al. Short-term androgen deprivation and radiotherapy for locally advanced prostate cancer: results from the Trans-Tasman Radiation Oncology Group 96.01 randomised controlled trial. Lancet Oncol. 6, 841–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Hanks, G. E. et al. Phase III trial of long-term adjuvant androgen deprivation after neoadjuvant hormonal cytoreduction and radiotherapy in locally advanced carcinoma of the prostate: the Radiation Therapy Oncology Group Protocol 92–02. J. Clin. Oncol. 21, 3972–3978 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Denham, J. W. et al. Short-term neoadjuvant androgen deprivation and radiotherapy for locally advanced prostate cancer: 10-year data from the TROG 96.01 randomised trial. Lancet Oncol. 12, 451–459 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Roach, M. et al. Short-term neoadjuvant androgen deprivation therapy and external-beam radiotherapy for locally advanced prostate cancer: long-term results of RTOG 8610. J. Clin. Oncol. 26, 585–591 (2008).

    Article  PubMed  Google Scholar 

  15. Bolla, M. et al. Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomised trial. Lancet 360, 103–106 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Pilepich, M. V. et al. Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma—long-term results of phase III RTOG 85–31. Int. J. Radiat. Oncol. Biol. Phys. 61, 1285–1290 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Pilepich, M. V. et al. Phase III trial of androgen suppression using goserelin in unfavorable-prognosis carcinoma of the prostate treated with definitive radiotherapy: report of Radiation Therapy Oncology Group Protocol 85–31. J. Clin. Oncol. 15, 1013–1021 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Souhami, L., Bae, K., Pilepich, M. & Sandler, H. Impact of the duration of adjuvant hormonal therapy in patients with locally advanced prostate cancer treated with radiotherapy: a secondary analysis of RTOG 85–31. J. Clin. Oncol. 27, 2137–2143 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Horwitz, E. M. et al. Ten-year follow-up of radiation therapy oncology group protocol 92–02: a phase III trial of the duration of elective androgen deprivation in locally advanced prostate cancer. J. Clin. Oncol. 26, 2497–2504 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Bolla, M. et al. Duration of androgen suppression in the treatment of prostate cancer. N. Engl. J. Med. 360, 2516–2527 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Purdy, J. A. Intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 35, 845–846 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Al-Mamgani, A. et al. Update of Dutch multicenter dose-escalation trial of radiotherapy for localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 72, 980–988 (2008).

    Article  PubMed  Google Scholar 

  23. Dearnaley, D. P. et al. Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: long-term results from the MRC RT01 randomised controlled trial. Lancet Oncol. 15, 464–473 (2014).

    Article  PubMed  Google Scholar 

  24. Kuban, D. A. et al. Long-term results of the, M. D. Anderson randomized dose-escalation trial for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 70, 67–74 (2008).

    Article  PubMed  Google Scholar 

  25. Beckendorf, V. et al. 70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 80, 1056–1063 (2011).

    Article  PubMed  Google Scholar 

  26. Konaka, H. et al. Tri-Modality therapy with I-125 brachytherapy, external beam radiation therapy, and short- or long-term hormone therapy for high-risk localized prostate cancer (TRIP): study protocol for a phase III, multicenter, randomized, controlled trial. BMC Cancer 12, 110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cox, J. D., Stetz, J. & Pajak, T. F. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int. J. Radiat. Oncol. Biol. Phys. 31, 1341–1346 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Sheets, N. C. et al. Intensity-modulated radiation therapy, proton therapy, or conformal radiation therapy and morbidity and disease control in localized prostate cancer. JAMA 307, 1611–1620 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Michalski, J. M. et al. Preliminary toxicity analysis of 3-dimensional conformal radiation therapy versus intensity modulated radiation therapy on the high-dose arm of the Radiation Therapy Oncology Group 0126 prostate cancer trial. Int. J. Radiat. Oncol. Biol. Phys. 87, 932–938 (2013).

    Article  PubMed  Google Scholar 

  30. Zelefsky, M. J. et al. Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 70, 1124–1129 (2008).

    Article  PubMed  Google Scholar 

  31. Hoppe, B. S. et al. Comparative effectiveness study of patient-reported outcomes after proton therapy or intensity-modulated radiotherapy for prostate cancer. Cancer 120, 1076–1082 (2014).

    Article  PubMed  Google Scholar 

  32. Park, S. S. et al. Adaptive image-guided radiotherapy (IGRT) eliminates the risk of biochemical failure caused by the bias of rectal distension in prostate cancer treatment planning: clinical evidence. Int. J. Radiat. Oncol. Biol. Phys. 83, 947–952 (2012).

    Article  PubMed  Google Scholar 

  33. van Haaren, P. M. et al. Influence of daily setup measurements and corrections on the estimated delivered dose during IMRT treatment of prostate cancer patients. Radiother. Oncol. 90, 291–298 (2009).

    Article  PubMed  Google Scholar 

  34. Sanda, M. G. et al. Quality of life and satisfaction with outcome among prostate-cancer survivors. N. Engl. J. Med. 358, 1250–1261 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Wei, J. T., Dunn, R. L., Litwin, M. S., Sandler, H. M. & Sanda, M. G. Development and validation of the expanded prostate cancer index composite (EPIC) for comprehensive assessment of health-related quality of life in men with prostate cancer. Urology 56, 899–905 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Kamo, N. et al. Evaluation of the SCA instrument for measuring patient satisfaction with cancer care administered via paper or via the Internet. Ann. Oncol. 22, 723–729 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Incrocci, L., Koper, P. C., Hop, W. C. & Slob, A. K. Sildenafil citrate (Viagra) and erectile dysfunction following external beam radiotherapy for prostate cancer: a randomized, double-blind, placebo-controlled, cross-over study. Int. J. Radiat. Oncol. Biol. Phys. 51, 1190–1195 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Incrocci, L., Slagter, C., Slob, A. K. & Hop, W. C. A randomized, double-blind, placebo-controlled, cross-over study to assess the efficacy of tadalafil (Cialis) in the treatment of erectile dysfunction following three-dimensional conformal external-beam radiotherapy for prostatic carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 66, 439–444 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Pisansky, T. M. et al. Tadalafil for prevention of erectile dysfunction after radiotherapy for prostate cancer: the Radiation Therapy Oncology Group [0831] randomized clinical trial. JAMA 311, 1300–1307 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brenner, D. J., Curtis, R. E., Hall, E. J. & Ron, E. Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery. Cancer 88, 398–406 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Kendal, W. S., Eapen, L., Macrae, R., Malone, S. & Nicholas, G. Prostatic irradiation is not associated with any measurable increase in the risk of subsequent rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 65, 661–668 (2006).

    Article  PubMed  Google Scholar 

  42. Baxter, N. N., Tepper, J. E., Durham, S. B., Rothenberger, D. A. & Virnig, B. A. Increased risk of rectal cancer after prostate radiation: a population-based study. Gastroenterology 128, 819–824 (2005).

    Article  PubMed  Google Scholar 

  43. Nam, R. K. et al. Incidence of complications other than urinary incontinence or erectile dysfunction after radical prostatectomy or radiotherapy for prostate cancer: a population-based cohort study. Lancet Oncol. 15, 223–231 (2014).

    Article  PubMed  Google Scholar 

  44. Bhojani, N. et al. The rate of secondary malignancies after radical prostatectomy versus external beam radiation therapy for localized prostate cancer: a population-based study on 17,845 patients. Int. J. Radiat. Oncol. Biol. Phys. 76, 342–348 (2010).

    Article  PubMed  Google Scholar 

  45. Davis, E. J., Beebe-Dimmer, J. L., Yee, C. L. & Cooney, K. A. Risk of second primary tumors in men diagnosed with prostate cancer: a population-based cohort study. Cancer 120, 2735–2741 (2014).

    Article  PubMed  Google Scholar 

  46. Tayek, J. A. et al. Nutritional and metabolic effects of gonadotropin-releasing hormone agonist treatment for prostate cancer. Metabolism 39, 1314–1319 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Smith, J. C. et al. The effects of induced hypogonadism on arterial stiffness, body composition, and metabolic parameters in males with prostate cancer. J. Clin. Endocrinol. Metab. 86, 4261–4267 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Smith, M. R. et al. Changes in body composition during androgen deprivation therapy for prostate cancer. J. Clin. Endocrinol. Metab. 87, 599–603 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Berruti, A. et al. Changes in bone mineral density, lean body mass and fat content as measured by dual energy x-ray absorptiometry in patients with prostate cancer without apparent bone metastases given androgen deprivation therapy. J. Urol. 167, 2361–2367; discussion 2367 (2002).

    Article  PubMed  Google Scholar 

  50. Smith, M. R. Changes in fat and lean body mass during androgen-deprivation therapy for prostate cancer. Urology 63, 742–745 (2004).

    Article  PubMed  Google Scholar 

  51. Eri, L. M., Urdal, P. & Bechensteen, A. G. Effects of the luteinizing hormone-releasing hormone agonist leuprolide on lipoproteins, fibrinogen and plasminogen activator inhibitor in patients with benign prostatic hyperplasia. J. Urol. 154, 100–104 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Smith, M. R., Lee, H. & Nathan, D. M. Insulin sensitivity during combined androgen blockade for prostate cancer. J. Clin. Endocrinol. Metab. 91, 1305–1308 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Dockery, F., Bulpitt, C. J., Agarwal, S., Donaldson, M. & Rajkumar, C. Testosterone suppression in men with prostate cancer leads to an increase in arterial stiffness and hyperinsulinaemia. Clin. Sci. (Lond.) 104, 195–201 (2003).

    Article  CAS  Google Scholar 

  54. Keating, N. L., O'Malley, A. J. & Smith, M. R. Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J. Clin. Oncol. 24, 4448–4456 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Saigal, C. S. et al. Androgen deprivation therapy increases cardiovascular morbidity in men with prostate cancer. Cancer 110, 1493–1500 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Keating, N. L., O'Malley, A. J., Freedland, S. J. & Smith, M. R. Diabetes and cardiovascular disease during androgen deprivation therapy: observational study of veterans with prostate cancer. J. Natl Cancer Inst. 102, 39–46 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsai, H. K., D'Amico, A. V., Sadetsky, N., Chen, M. H. & Carroll, P. R. Androgen deprivation therapy for localized prostate cancer and the risk of cardiovascular mortality. J. Natl Cancer Inst. 99, 1516–1524 (2007).

    Article  PubMed  Google Scholar 

  58. Punnen, S., Cooperberg, M. R., Sadetsky, N. & Carroll, P. R. Androgen deprivation therapy and cardiovascular risk. J. Clin. Oncol. 29, 3510–3516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Efstathiou, J. A. et al. Cardiovascular mortality after androgen deprivation therapy for locally advanced prostate cancer: RTOG 85–31. J. Clin. Oncol. 27, 92–99 (2009).

    Article  PubMed  Google Scholar 

  60. Nguyen, P. L. et al. Association of androgen deprivation therapy with cardiovascular death in patients with prostate cancer: a meta-analysis of randomized trials. JAMA 306, 2359–2366 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Levine, G. N. et al. Androgen-deprivation therapy in prostate cancer and cardiovascular risk: a science advisory from the American Heart Association, American Cancer Society, and American Urological Association: endorsed by the American Society for Radiation Oncology. CA Cancer J. Clin. 60, 194–201 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Schow, D. A., Renfer, L. G., Rozanski, T. A. & Thompson, I. M. Prevalence of hot flushes during and after neoadjuvant hormonal therapy for localized prostate cancer. South. Med. J. 91, 855–857 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Irani, J., Salomon, L., Oba, R., Bouchard, P. & Mottet, N. Efficacy of venlafaxine, medroxyprogesterone acetate, and cyproterone acetate for the treatment of vasomotor hot flushes in men taking gonadotropin-releasing hormone analogues for prostate cancer: a double-blind, randomised trial. Lancet Oncol. 11, 147–154 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Vitolins, M. Z. et al. Randomized trial to assess the impact of venlafaxine and soy protein on hot flashes and quality of life in men with prostate cancer. J. Clin. Oncol. 31, 4092–4098 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Loprinzi, C. L. et al. A phase III randomized, double-blind, placebo-controlled trial of gabapentin in the management of hot flashes in men (N00CB). Ann. Oncol. 20, 542–549 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Potosky, A. L. et al. Quality-of-life outcomes after primary androgen deprivation therapy: results from the Prostate Cancer Outcomes Study. J. Clin. Oncol. 19, 3750–3757 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Lubeck, D. P., Grossfeld, G. D. & Carroll, P. R. The effect of androgen deprivation therapy on health-related quality of life in men with prostate cancer. Urology 58 (Suppl. 1), 94–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Rosen, R. C. et al. The international index of erectile function (IIEF): a multidimensional scale for assessment of erectile dysfunction. Urology 49, 822–830 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Teloken, P. E., Ohebshalom, M., Mohideen, N. & Mulhall, J. P. Analysis of the impact of androgen deprivation therapy on sildenafil citrate response following radiation therapy for prostate cancer. J. Urol. 178, 2521–2525 (2007).

    Article  PubMed  Google Scholar 

  70. Elliott, S. et al. Androgen deprivation therapy for prostate cancer: recommendations to improve patient and partner quality of life. J. Sex. Med. 7, 2996–3010 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Kyrdalen, A. E., Dahl, A. A., Hernes, E., Hem, E. & Fosså, S. D. Fatigue in prostate cancer survivors treated with definitive radiotherapy and LHRH analogs. Prostate 70, 1480–1489 (2010).

    Article  PubMed  Google Scholar 

  72. Segal, R. J. et al. Resistance exercise in men receiving androgen deprivation therapy for prostate cancer. J. Clin. Oncol. 21, 1653–1659 (2003).

    Article  PubMed  Google Scholar 

  73. Tyrrell, C. J. et al. Bicalutamide ('Casodex') 150 mg as adjuvant to radiotherapy in patients with localised or locally advanced prostate cancer: results from the randomised Early Prostate Cancer Programme. Radiother. Oncol. 76, 4–10 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Tyrrell, C. J. et al. Prophylactic breast irradiation with a single dose of electron beam radiotherapy (10 Gy) significantly reduces the incidence of bicalutamide-induced gynecomastia. Int. J. Radiat. Oncol. Biol. Phys. 60, 476–483 (2004).

    Article  PubMed  Google Scholar 

  75. Arcangeli, G. et al. A prospective phase III randomized trial of hypofractionation versus conventional fractionation in patients with high-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 78, 11–18 (2010).

    Article  PubMed  Google Scholar 

  76. Arcangeli, G. et al. Acute and late toxicity in a randomized trial of conventional versus hypofractionated three-dimensional conformal radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 79, 1013–1021 (2011).

    Article  PubMed  Google Scholar 

  77. Yeoh, E. E. et al. Hypofractionated versus conventionally fractionated radiotherapy for prostate carcinoma: final results of phase III randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 81, 1271–1278 (2011).

    Article  PubMed  Google Scholar 

  78. Pollack, A. et al. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J. Clin. Oncol. 31, 3860–3868 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Dearnaley, D. et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: preliminary safety results from the CHHiP randomised controlled trial. Lancet Oncol. 13, 43–54 (2012).

    Article  PubMed  Google Scholar 

  80. Roach, M. 3rd et al. Predicting the risk of lymph node involvement using the pre-treatment prostate specific antigen and Gleason score in men with clinically localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 28, 33–37 (1994).

    Article  PubMed  Google Scholar 

  81. Roach, M. 3rd et al. Phase III trial comparing whole-pelvic versus prostate-only radiotherapy and neoadjuvant versus adjuvant combined androgen suppression: Radiation Therapy Oncology Group 9413. J. Clin. Oncol. 21, 1904–1911 (2003).

    Article  PubMed  Google Scholar 

  82. Lawton, C. A. et al. An update of the phase III trial comparing whole pelvic to prostate only radiotherapy and neoadjuvant to adjuvant total androgen suppression: updated analysis of RTOG 94–13, with emphasis on unexpected hormone/radiation interactions. Int. J. Radiat. Oncol. Biol. Phys. 69, 646–655 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  83. de Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ryan, C. J. et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 368, 138–148 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Beer, T. M. et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med. 371, 424–433 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Nanda, A., Chen, M. H., Braccioforte, M. H., Moran, B. J. & D'Amico, A. V. Hormonal therapy use for prostate cancer and mortality in men with coronary artery disease-induced congestive heart failure or myocardial infarction. JAMA 302, 866–873 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussing content, writing the article and review and editing of the manuscript before submission.

Corresponding author

Correspondence to Ronald C. Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohiuddin, J., Baker, B. & Chen, R. Radiotherapy for high-risk prostate cancer. Nat Rev Urol 12, 145–154 (2015). https://doi.org/10.1038/nrurol.2015.25

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.25

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing