Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of open and laparoscopic stone surgery in the modern era of endourology

Key Points

  • Extracorporeal shock wave lithotripsy, ureteroscopy, and percutaneous nephrolithotomy are first-line treatment options for upper urinary tract calculi

  • The role of open stone surgery has essentially been eliminated by noninvasive and minimally invasive alternative treatment options

  • Open stone surgery should only be considered for complex cases, as a salvage treatment option, or when access to modern-day technology is limited

  • Laparoscopic and robot-assisted techniques are able to replicate the goals of open surgery with reduced potential morbidity and should be offered for indicated cases

  • Although overall literature regarding laparoscopic approaches is lacking, favourable evidence exists supporting laparoscopic pyelolithotomy and ureterolithotomy for solitary large stones

  • Combining treatment approaches is often the best way to achieve maximal stone clearance and optimal outcomes

Abstract

Treatment options for kidney stones and ureteral stones have evolved considerably over the past several decades, to the point where almost any stone can now be considered for treatment with a noninvasive or a minimally invasive approach including shock wave lithotripsy, ureteroscopy or percutaneous nephrolithotomy. The safety and morbidity associated with these techniques are favourable relative to traditional open surgical approaches to stone removal. However, they also require unique skillsets, access to instrumentation and relatively high maintenance costs, potentially limiting their use on a global scale. Coincident with the emergence of endourology have been considerable improvements in laparoscopic surgical techniques to the point that nearly any open surgery can be performed in a minimally invasive laparoscopic fashion. Such approaches, including those with robotic assistance, have potential application for the treatment of upper urinary tract stones, particularly in complex senarios as well as in areas where access to endourological instruments might be limited.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Open stone surgery.
Figure 2: Extracorporeal shock wave lithotripsy (ESWL).
Figure 3: Endoscopic approaches to stone removal.
Figure 4: Percutaneous nephrolithotomy (PCNL).
Figure 5: CT of a stone-containing pelvic kidney.

References

  1. Hippocrates. The genuine works of Hippocrates [Greek] (Wood's Library of Standard Medical Authors, 1879–1886).

  2. Herr, H. W. 'Cutting for the stone': the ancient art of lithotomy. BJU Int. 101, 1214–1216 (2008).

    Article  PubMed  Google Scholar 

  3. Simforoosh, N. & Aminsharifi, A. Laparoscopic management in stone disease. Curr. Opin. Urol. 23, 169–174 (2013).

    Article  PubMed  Google Scholar 

  4. Chaussy, C., Brendel, W. & Schmiedt, E. Extracorporeally induced destruction of kidney stones by shock waves. Lancet 2, 1265–1268 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. Lingeman, J. E., Matlaga, B. R. & Evan, A. P. in Campbell–Walsh Urology 9th edn Ch. 44 (eds Wein, A. J., Kavoussi. L. R., Novick, A, C., Partin, A. W. & Peters, C. A.) (Saunders, 2007).

    Google Scholar 

  6. Aboumarzouk, O. M. et al. Extracorporeal shock wave lithotripsy (ESWL) versus ureteroscopic management for ureteric calculi. Cochrane Database Syst. Rev. http://dx.doi.org/10.1002/14651858.CD006029.pub3 (2011).

  7. Turney, B. W. et al. Trends in urological stone disease. BJU Int. 109, 1082–1087 (2012).

    Article  PubMed  Google Scholar 

  8. Bhojani, N. & Lingeman, J. E. Shockwave lithotripsy—new concepts and optimizing treatment parameters. Urol. Clin. North Am. 40, 59–66 (2013).

    Article  PubMed  Google Scholar 

  9. Scales, C. D. Jr. Practice patterns in the management of urinary lithiasis. Curr. Urol. Rep. 14, 154–157 (2013).

    Article  PubMed  Google Scholar 

  10. Lyon, E. S., Kyker, J. S. & Schoenberg, H. W. Transurethral ureteroscopy in women: a ready addition to the urological armamentarium. J. Urol. 119, 35–36 (1978).

    Article  CAS  PubMed  Google Scholar 

  11. Hyams, E. S. et al. A Prospective, Multi-Institutional Study of Flexible Ureteroscopy for Proximal Ureteral Stones <2 cm. J. Urol. 193, 165–169 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Takazawa, R., Kitayama, S. & Tsujii, T. Appropriate kidney stone size for ureteroscopic lithotripsy: When to switch to a percutaneous approach. World J. Nephrol. 4, 111–117 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cohen, J., Cohen, S. & Grasso, M. Ureteropyeloscopic treatment of large, complex intrarenal and proximal ureteral calculi. BJU Int. 111, E127–E131 (2013).

    Article  PubMed  Google Scholar 

  14. Riley, J. M., Stearman, L. & Troxel, S. Retrograde ureteroscopy for renal stones larger than 2.5 cm. J. Endourol. 23, 1395–1398 (2009).

    Article  PubMed  Google Scholar 

  15. Hyams, E. S. et al. Flexible ureterorenoscopy and holmium laser lithotripsy for the management of renal stone burdens that measure 2 to 3 cm: a multi-institutional experience. J. Endourol. 24, 1583–1588 (2010).

    Article  PubMed  Google Scholar 

  16. Tiselius, H. G. et al. Guidelines on urolithiasis. Eur. Urol. 40, 362–371 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Preminger, G. M. et al. Chapter 1: AUA guideline on management of staghorn calculi: diagnosis and treatment recommendations. J. Urol. 173, 1991–2000 (2005).

    Article  PubMed  Google Scholar 

  18. Albala, D. M. et al. Lower pole I: a prospective randomized trial of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy for lower pole nephrolithiasis-initial results. J. Urol. 166, 2072–2080 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Soucy, F. et al. Percutaneous nephrolithotomy for staghorn calculi: a single center's experience over 15 years. J. Endourol. 23, 1669–1673 (2009).

    Article  PubMed  Google Scholar 

  20. Bayar, G. et al. Comparison of laparoscopic and open ureterolithotomy in impacted and very large ureteral stones. Urol. J. 11, 1423–1428 (2014).

    PubMed  Google Scholar 

  21. Kerbl, K. et al. Current management of urolithiasis: progress or regress? J. Endourol. 16, 281–288 (2002).

    Article  PubMed  Google Scholar 

  22. Humphreys, M. R. The emerging role of robotics and laparoscopy in stone disease. Urol. Clin. North Am. 40, 115–128 (2013).

    Article  PubMed  Google Scholar 

  23. Gaur, D. D. et al. Retroperitoneal laparoscopic pyelolithotomy. J. Urol. 151, 927–929 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Nambirajan, T. et al. Role of laparoscopy in management of renal stones: single-center experience and review of literature. J. Endourol. 19, 353–399 (2005).

    Article  PubMed  Google Scholar 

  25. Hemal, A. K. et al. Evaluation of laparoscopic retroperitoneal surgery in urinary stone disease. J. Endourol. 15, 701–705 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Li, S. et al. Randomized controlled trial comparing retroperitoneal laparoscopic pyelolithotomy versus percutaneous nephrolithotomy for the treatment of large renal pelvic calculi: a pilot study. J. Endourol. 28, 946–950 (2014).

    Article  PubMed  Google Scholar 

  27. Al-Hunayan, A. et al. Management of solitary renal pelvic stone: laparoscopic retroperitoneal pyelolithotomy versus percutaneous nephrolithotomy. J. Endourol. 25, 975–978 (2011).

    Article  PubMed  Google Scholar 

  28. Basiri, A. et al. Comparison of safety and efficacy of laparoscopic pyelolithotomy versus percutaneous nephrolithotomy in patients with renal pelvic stones: a randomized clinical trial. Urol. J. 11, 1932–1937 (2014).

    PubMed  Google Scholar 

  29. Wang, X. et al. Laparoscopic pyelolithotomy compared to percutaneous nephrolithotomy as surgical management for large renal pelvic calculi: a meta-analysis. J. Urol. 190, 888–893 (2013).

    Article  PubMed  Google Scholar 

  30. Salvado, J. A. et al. Laparoscopic pyelolithotomy: optimizing surgical technique. J. Endourol. 23, 575–578 (2009).

    Article  PubMed  Google Scholar 

  31. Borges, R. et al. Coagulum pyelolithotomy “revisited” by laparoscopy: technique modification. Urology 79, 1412.e5–1412.e8 (2012).

    Article  Google Scholar 

  32. Nouralizadeh, A. et al. Laparoscopic transperitoneal pyelolithotomy for management of staghorn renal calculi. J. Laparoendosc. Adv. Surg. Tech. A 22, 61–65 (2012).

    Article  PubMed  Google Scholar 

  33. Stein, R. J. et al. Laparoscopic pyeloplasty with concomitant pyelolithotomy: technique and outcomes. J. Endourol. 22, 1251–1255 (2008).

    Article  PubMed  Google Scholar 

  34. Srivastava, A. et al. Laparoscopic pyeloplasty with concomitant pyelolithotomy—is it an effective mode of treatment? Urol. Int. 80, 306–309 (2008).

    Article  PubMed  Google Scholar 

  35. Ramakumar, S. et al. Laparoscopic pyeloplasty with concomitant pyelolithotomy. J. Urol. 167, 1378–1380 (2002).

    Article  PubMed  Google Scholar 

  36. Atug, F. et al. Robotic assisted laparoscopic pyeloplasty in children. J. Urol. 174, 1440–1442 (2005).

    Article  PubMed  Google Scholar 

  37. Mufarrij, P. W. et al. Robotic dismembered pyeloplasty: a 6-year, multi-institutional experience. J. Urol. 180, 1391–1396 (2008).

    Article  PubMed  Google Scholar 

  38. Assimos, D. G. et al. Postoperative anatrophic nephrolithotomy bleeding. J. Urol. 135, 1153–1156 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. Assimos, D. G. Anatrophic nephrolithotomy. Urology 57, 161–165 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Woodhouse, C. R. et al. The place of extended pyelolithotomy (Gil-Vernet Operation) in the management of renal staghorn calculi. Br. J. Urol. 53, 520–523 (1981).

    Article  CAS  PubMed  Google Scholar 

  41. Kaouk, J. H. et al. Laparoscopic anatrophic nephrolithotomy: feasibility study in a chronic porcine model. J. Urol. 169, 691–696 (2003).

    Article  PubMed  Google Scholar 

  42. Deger, S. et al. Laparoscopic anatrophic nephrolithotomy. Scand. J. Urol. Nephrol. 38, 263–265 (2004).

    Article  PubMed  Google Scholar 

  43. Zhou, L. et al. Retroperitoneal laparoscopic anatrophic nephrolithotomy for large staghorn calculi. Int. J. Urol. 18, 126–129 (2011).

    Article  PubMed  Google Scholar 

  44. Simforoosh, N. et al. Laparoscopic anatrophic nephrolithotomy for management of staghorn renal calculi. J. Laparoendosc. Adv. Surg. Tech. A 23, 306–310 (2013).

    Article  PubMed  Google Scholar 

  45. Giedelman, C. et al. Laparoscopic anatrophic nephrolithotomy: developments of the technique in the era of minimally invasive surgery. J. Endourol. 26, 444–450 (2012).

    Article  PubMed  Google Scholar 

  46. Ghani, K. R. et al. Robot-assisted anatrophic nephrolithotomy with renal hypothermia for managing staghorn calculi. J. Endourol. 27, 1393–1398 (2013).

    Article  PubMed  Google Scholar 

  47. King, S. A. Klaassen, Z. & Madi, R. Robot-assisted anatrophic nephrolithotomy: description of technique and early results. J. Endourol. 28, 325–329 (2014).

    Article  PubMed  Google Scholar 

  48. Gaur, D. D. et al. Laparoscopic ureterolithotomy: technical considerations and long-term follow-up. BJU Int. 89, 339–343 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Simforoosh, N. et al. Laparoscopic management of ureteral calculi: a report of 123 cases. Urol. J. 4, 138–141 (2007).

    PubMed  Google Scholar 

  50. Basiri, A. et al. Retrograde, antegrade, and laparoscopic approaches for the management of large, proximal ureteral stones: a randomized clinical trial. J. Endourol. 22, 2677–2680 (2008).

    Article  PubMed  Google Scholar 

  51. Kumar, A. et al. A prospective randomized comparison between laparoscopic ureterolithotomy and semirigid ureteroscopy for upper ureteral stones >2 cm: a single-center experience. J. Endourol. http://dx.doi.org/10.1089/end.2013.0791 (2014).

  52. Dogra, P. N. et al. Lower ureteral stones revisited: expanding the horizons of robotics. Urology 82, 95–99 (2013).

    Article  PubMed  Google Scholar 

  53. Raj, G. V. et al. Percutaneous management of calculi within horseshoe kidneys. J. Urol. 170, 48–51 (2003).

    Article  PubMed  Google Scholar 

  54. Tan, Y. K., Cha, D. Y. & Gupta, M. Management of stones in abnormal situations. Urol. Clin. North Am. 40, 79–97 (2013).

    Article  PubMed  Google Scholar 

  55. Drach, G. W. et al. Report of the United States cooperative study of extracorporeal shock wave lithotripsy. J. Urol. 135, 1127–1133 (1986).

    Article  CAS  PubMed  Google Scholar 

  56. Sheir, K. Z. et al. Extracorporeal shock wave lithotripsy in anomalous kidneys: 11-year experience with two second-generation lithotripters. Urology 62, 10–16 (2003).

    Article  PubMed  Google Scholar 

  57. Talic, R. F. Extracorporeal shock-wave lithotripsy monotherapy in renal pelvic ectopia. Urology 48, 857–861 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Atis, G. et al. Retrograde intrarenal surgery in patients with horseshoe kidneys. Urolithiasis 41, 79–83 (2013).

    Article  PubMed  Google Scholar 

  59. Molimard, B. et al. Flexible ureterorenoscopy with holmium laser in horseshoe kidneys. Urology 76, 1334–1337 (2010).

    Article  PubMed  Google Scholar 

  60. Weizer, A. Z. et al. Ureteroscopic management of renal calculi in anomalous kidneys. Urology 65, 265–269 (2005).

    Article  PubMed  Google Scholar 

  61. Miller, N. L. et al. The presence of horseshoe kidney does not affect the outcome of percutaneous nephrolithotomy. J. Endourol. 22, 1219–1225 (2008).

    Article  PubMed  Google Scholar 

  62. Watterson, J. D. et al. Percutaneous nephrolithotomy of a pelvic kidney: a posterior approach through the greater sciatic foramen. J. Urol. 166, 209–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Matlaga, B. R. et al. Percutaneous nephrolithotomy for ectopic kidneys: over, around, or through. Urology 67, 513–517 (2006).

    Article  PubMed  Google Scholar 

  64. Zafar, F. S. & Lingeman, J. E. Value of laparoscopy in the management of calculi complicating renal malformations. J. Endourol. 10, 379–383 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. El-Kappany, H. A. et al. Combination of laparoscopy and nephroscopy for treatment of stones in pelvic ectopic kidneys. J. Endourol. 21, 1131–1136 (2007).

    Article  PubMed  Google Scholar 

  66. Elbahnasy, A. M. et al. Laparoscopic pyelolithotomy in selected patients with ectopic pelvic kidney: a feasible minimally invasive treatment option. J. Endourol. 25, 985–989 (2011).

    Article  PubMed  Google Scholar 

  67. Bozkurt, I. H., Cirakoglu, A. & Ozer, S. Retroperitoneal laparoscopic pyelolithotomy in an ectopic pelvic kidney. JSLS 16, 325–328 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Nayyar, R., Singh, P. & Gupta, N. P. Robot-assisted laparoscopic pyeloplasty with stone removal in an ectopic pelvic kidney. JSLS 14, 130–132 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Khairy-Salem, H., el-Ghoneimy, M. & el-Atrebi, M. Semirigid ureteroscopy in management of large proximal ureteral calculi: is there still a role in developing countries? Urology 77, 1064–1068 (2011).

    Article  PubMed  Google Scholar 

  70. Watterson, J. D., Soon, S. & Jana, K. Access related complications during percutaneous nephrolithotomy: urology versus radiology at a single academic institution. J. Urol. 176, 142–145 (2006).

    Article  PubMed  Google Scholar 

  71. Hohwu, L. et al. A short-term cost-effectiveness study comparing robot-assisted laparoscopic and open retropubic radical prostatectomy. J. Med. Econ. 14, 403–409 (2011).

    Article  PubMed  Google Scholar 

  72. Wright, J. D. et al. Robotically assisted vs laparoscopic hysterectomy among women with benign gynecologic disease. JAMA 309, 689–698 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Thompson, R. H. et al. Every minute counts when the renal hilum is clamped during partial nephrectomy. Eur. Urol. 58, 340–345 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Institutes of Health for its support.

Author information

Authors and Affiliations

Authors

Contributions

Both authors made substantial contributions to discussion of content, wrote the article and reviewed and edited the manuscript before submission. M.S.B. researched data for the article.

Corresponding author

Correspondence to James E. Lingeman.

Ethics declarations

Competing interests

J.E.L. has participated in, lectured for and is a consultant and advisor to Lumenis and Boston Scientific and has also been involved in a scientific study run by Boston Scientific. He is an owner and medical director of Beck Analytical and an owner of and investor in Midwest Mobile Lithotripsy and Midstate Mobile Lithotripsy. M.S.B. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borofsky, M., Lingeman, J. The role of open and laparoscopic stone surgery in the modern era of endourology. Nat Rev Urol 12, 392–400 (2015). https://doi.org/10.1038/nrurol.2015.141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing