Effects of psychological stress on male fertility

Key Points

  • Psychological stress has been perceived clinically as a potential risk factor for male infertility, although to what extent it affects human male fertility is difficult to study and evaluate

  • Clinical studies demonstrate an inverse relationship between psychological stress and semen parameters

  • The paraventricular nucleus (PVN) in the hypothalamus regulates stress responses and activates the sympathetic–adrenal system (SAS), and the hypothalamic–pituitary–gonadal (HPG) and hypothalamic–pituitary–adrenal (HPA) axes

  • Activation of HPG and HPA axes leads to a fall in testosterone levels in the testes, affecting Sertoli cells and the blood—testis barrier

Abstract

Psychological stress can be defined as any uncomfortable 'emotional experience' accompanied by predictable biochemical, physiological and behavioural changes or responses. Many clinical studies looking at the effects of psychological stress on male fertility have shown that stress is associated with reduced paternity and abnormal semen parameters. Enough scientific evidence exists to suggest that psychological stress could severely affect spermatogenesis, mainly as a result of varying testosterone secretion. The hypothalamic–pituitary–adrenal axis has a direct inhibitory action on the hypothalamic–pituitary–gonadal (HPG) axis and Leydig cells in the testes. The newly discovered hormone, gonadotropin-inhibitory hormone (GnIH), also has an inhibitory effect on the HPG axis. Inhibition of the HPG axis results in a fall in testosterone levels, which causes changes in Sertoli cells and the blood–testis barrier, leading to the arrest of spermatogenesis. Germ cells also become vulnerable to gonadotoxins and oxidation. However, the extent and severity of the effects of psychological stress on human testes is difficult to study and data mostly come from animal models. Despite this limitation, stress as a causative factor in male infertility cannot be ignored and patients should be made aware of its effects on testicular function and fertility and helped to manage them.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The mechanisms of the stress response.
Figure 2: The HPA axis pathway.
Figure 3: The GnRH pathway.

References

  1. 1

    Herman, J. P. Neural control of stress adaptation. Front. Behav. Neurosci. http://dx.doi.org/10.3389/fnbeh.2013.00061 (2013).

  2. 2

    Chrousos, G. P. Stress and disorders of the stress system. Nat. Rev. Endocrinol. 5, 374–381 (2009).

    CAS  PubMed  Article  Google Scholar 

  3. 3

    Schneiderman, N., Ironson, G. & Siegel, S. D. Stress and Health: Psychological, behavioral and biological determinants. Annu. Rev. Clin. Psychol. 1, 607–628 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Rivier, C. & Rivest, S. Effect of stress on the activity of the hypothalamic-pituitary-gonadal axis: peripheral and central mechanisms. Biol. Reprod. 49, 523–532 (1991).

    Article  Google Scholar 

  5. 5

    McEwen, B. S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87, 873–904 (2007).

    Article  Google Scholar 

  6. 6

    Wingfield, J. C. & Sapolaski, R. M. Reproduction and resistance to stress when and how. J. Neuroendocrinol. 15, 711–724 (2003).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Baum, A. & Posluszny, D. M. Health psychology: mapping biobehavioral contributions to health and illness. Ann. Rev. Psychol. 50, 137–163 (1999).

    CAS  Article  Google Scholar 

  8. 8

    Levine, A. C., Kirschenbaum, A. & Gabrilove, J. L. The role of sex steroids in the pathogenesis and maintenance of benign prostatic hyperplasia. Mt Sina. J. Med. 64, 20–25 (1997)

    CAS  Google Scholar 

  9. 9

    Akingbemi, B. T. Estrogen regulation of testicular function. Reprod. Biol. Endocrinol. 27, 51 (2005)

    Article  CAS  Google Scholar 

  10. 10

    Eskiocak, S. et al. Effect of psychological stress on the L-arginine-nitric oxide pathway and semen quality. Braz. J. Med. Biol. Res. 39, 581–588 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Lampiao, F. Variation of semen parameters in healthy medical students due to exam stress. Malawi Med. J. 21, 166–167 (2009).

    PubMed  PubMed Central  Google Scholar 

  12. 12

    Abu-Musa, A. A., Nassar, A. H., Hannoun, A. B. & Usta, I. M. Effect of the Lebanese civil war on sperm parameters. Fertil. Steril. 88, 1579–1582 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Zorn, B., Zucur, V., Stare J. & Meden-Vrtovec, H. Decline in sex ratio at birth after 10-day war in Slovenia. Hum. Reprod. 17, 3173–3177 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  14. 14

    DeStefano, F., Annest, J. L., Kresnow, M. J., Schrader, S. M. & Katz, D. F. Semen characteristics of Vietnam veterans. Reprod. Toxicol. 3, 165–173 (1989).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15

    Jurewicz, J., Hanke, W., Sobala, W., Merecz, D. & Radwan, M. The effect of stress on the semen quality [Polish]. Med. Pr. 61, 607–613 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. 16

    Fenster, L. et al. Effect of psychological stress on human semen quality. J. Androl. 18, 194–202 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Hjollund, N., Bonde, J., Henriksen, T., Giwercman, A. & Olsen, J. Job strain and male fertility. Epidemiology 15, 21–27 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18

    Schneid-Kofman, N. & Sheiner, E. Does stress affect male infertility?—a debate. Med. Sci. Monit. 11, SR11–SR13 (2005)

    PubMed  PubMed Central  Google Scholar 

  19. 19

    Lopez, J. F., Akil, H. & Watson, S. J. Neural circuits mediating stress. Biol. Psychiatry 46, 1461–1471 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    Nakano, I. The limbic system: An outline and brief history of its concept. Neuropathology 18, 211–214 (1998).

    Article  Google Scholar 

  21. 21

    McEwen, B. S. Protective and damaging effects of stress mediators: central role of the brain. Dialogues Clin. Neurosci. 8, 367–381 (2006).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Pacak, K. Stressor-specific activation of the hypothalamic-pituitary-adrenocortical axis. Physiol. Res. 49 (Suppl. 1), S11–S17 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Ferguson, A. V., Latchford, K. J. & Samson, W. K. The paraventricular nucleus of the hypothalamus, a potential target for integrative treatment of autonomic dysfunction. Expert Opin. Ther. Targets 12, 717–727 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Kalantaridou, S. N. et al. Corticotropin releasing hormone, stress and human reproduction: an update. J. Reprod. Med. 85, 33–39 (2010).

    CAS  Google Scholar 

  25. 25

    Mora, F., Segovia G., del Arco, A., de Blas, M. & Garrido P. Review: Stress, neurotransmitters, corticosterone and body–brain integration. Brain Res. 1476, 71–85 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    Habib, K. E., Gold, P. W. & Chrousos, G. P. Neuroendocrinology of stress. Endocrinol. Metabol. Clin. North Am. 30, 695–728 (2001).

    CAS  Article  Google Scholar 

  27. 27

    Kyrou, I. & Tsigos, C. Chronic stress, visceral obesity and gonadal dysfunction. Hormones 7, 287–293 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28

    Flak, J. N. et al. Role of paraventricular nucleus-projecting norepinephrine/epinephrine neurons in acute and chronic stress. Eur. J. Neurosci. 39, 1903–1911 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Kiss, A. & Aguilera, G. Participation of alpha 1-adrenergic receptors in the secretion of hypothalamic corticotropin releasing hormone during stress. Neuroendocrinology 56, 153–160 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30

    Calogero, A. E., Gallucci, W. T., Chrousos, G. P. & Gold, P. W. Catecholamine effects upon rat hypothalamic corticotropin–releasing hormone secretion in vitro. J. Clin. Invest. 82, 839–846 (1988).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Charamandari, E., Tsigos, C. & Chrousos, G. Endocrinology of stress response. Annu. Rev. Physiol. 67, 259–284 (2005).

    Article  CAS  Google Scholar 

  32. 32

    Chrousos, G. P. in Pediatric Endocrinology 2nd edn Ch. 1 (ed. Sperling, M. A.) 1–14 (Saunders, 2002).

    Google Scholar 

  33. 33

    Kuo, L. E. et al. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat. Med. 13, 803–811 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34

    Mawdsley, J. E. & Rampton, D. S. Recent advances in basic science: Psychological stress in IBD: new insights into pathogenic and therapeutic implications. Gut 54, 1481–1491 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Smith, A. I. & Funder, J. W. Proopiomelanocortin processing in the pituitary, central nervous system and peripheral tissues. Endocr. Rev. 9, 159–179 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36

    Aloe, L., Alleva, E. & Fiore, M. Stress and nerve growth factor: findings in animal models and humans. Pharmacol. Biochem. Behav. 73, 159–166 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Miller, G. E., Chen, E. & Zhou, E. S. If it is up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychol. Bull. 133, 25–45 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  38. 38

    McCarty, R., Howatt, K. & Konarska, M. Chronic stress and sympathetic-adrenal medullary responsiveness. Soc. Sci. Med. 26, 333–341 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Konarska, M., Stewart, R. E. & McCarty, R. Habituation of sympathetic-adrenal medullary responses following exposure to chronic intermittent stress. Physiol. Behav. 45, 255–261 (1989).

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Baum, A., Cohen, L. & Hall, M. Control and intrusive memories as possible determinants of chronic stress. Psychosom. Med. 55, 274–286 (1993).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Baum, A. & Grunberg, N. In Measuring stress: A guide for health and social scientists Ch. 8 (eds Cohen, S., Kessler, R. C. & Underwood, L. G.), 193–212 (Oxford University Press, 1995).

    Google Scholar 

  42. 42

    Brown, E. N., Meehan, P. M. & Dempster, A. P. A stochastic differential equation model of diurnal cortisol patterns. Am. J. Physiol. Endocrinol. Metab. 280, E450–E461 (2001).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Baumeister, R. F. & Leary, M. R. The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychol. Bull. 117, 497–529 (1995).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Asimakopoulos, B. Hypothalamus-Pituitary-Gonadal axis: It is time for revision. Human Genet. Embryol. http://dx.doi.org/10.4172/2161-0436.1000e106 (2012).

  45. 45

    Kirby, E. D., Geraghty, A. C., Ubuka, T., Bentley, G. E. & Kaufer, D. Stress increases putative gonadotropin inhibitory hormone and decreases luteinising hormone in male rats. Proc. Natl. Acad. Sci. USA 106, 11324–11329 (2009).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Froehlich, J. C. Opioid peptides. Alcohol Health Res. World 21, 132–136 (1997).

    CAS  PubMed  Google Scholar 

  47. 47

    Drolet, G. et al. Role of endogenous opioid system in the regulation of the stress response. Prog. Neuropsychopharmacol. Biol. Psychiatry 25, 729–741 (2001).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Yen, S. S. C., Quigley, M. E., Reid, R. L., Ropert, J. F. & Cetel, N. S. Neuroendocrinology of opioid peptides and their role in the control of gonadotropin and prolactin secretion. Am. J. Obstet. Gynecol. 152, 485–493 (1985).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Kelesidis, T., Kelesidis, I., Chou, S. & Mantzoros, C. S. Narrative Review: The Role of Leptin in Human Physiology: Emerging Clinical Applications. Ann. Intern. Med. 152, 93–100 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Cunningham, M. J., Clifton, D. K. & Steiner, R. A. leptin's actions on the reproductive axis: perspectives and mechanisms. Biol. Reprod. 60, 216–222 (1999).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Ahima, R. S. et al. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252 (1996).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Teerds, K. J., de Rooij, D. G. & Keijer, J. Functional relationship between obesity and male reproduction: from humans to animal models. Hum. Reprod. Update 17, 667–683 (2011).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Heiman, M. L. et al. Leptin inhibition of the hypothalamic-pituitary-adrenal axis in response to stress. Endocrinology 138, 3859–3863 (1997).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Durán-Pastén, M. L. & Fiordelisio, T. GnRH-induced Ca2+ signaling patterns and gonadotropin secretion in pituitary gonadotrophs. Functional adaptations to both ordinary and extraordinary physiological demands. Front. Endocrinol. (Lausanne) http://dx.doi.org/10.3389/fendo.2013.00127 (2013).

  55. 55

    Herbison, A. E. & Moenter, S. M. Deploarising and hyperpolarising actions of GABA (A) receptor activation on gonadotrophin-releasing hormone neurones: towards an emerging consensus. J. Neuroendocrinol. 23, 557–569 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56

    Manetti, G. J. & Honig, S. C. Update on male hormonal contraception: Is the vasectomy in jeopardy? Int. J. Impot Res. 22, 159–170 (2010).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Chimento, A., Sirianni, R., Casaburi, I. & Pezzi, V. Role of estrogen receptors and G protein-coupled estrogen receptor in regulation of hypothalamus-pituitary-testis axis and spermatogenesis. Front. Endocrinol. (Lausanne) http://dx.doi.org/10.3389/fendo.2014.00001 (2014).

  58. 58

    Canovatchel, W. J. et al. Luteinizing hormone pulsatility in subjects with 5-alpha-reductase deficiency and decreased dihydrotestosterone production. J. Clin. Endocrinol. Metab. 78, 916–921 (1994).

    CAS  PubMed  Google Scholar 

  59. 59

    Hayes, F. J., Decruz, S., Seminara, S. B., Boepple, P. A. & Crowley, W. F. Jr. Differential regulation of gonadotropin secretion by testosterone in the human male: absence of a negative feedback effect of testosterone on follicle-stimulating hormone secretion. J. Clin. Endocrinol. Metabol. 86, 53–58 (2001).

    CAS  Google Scholar 

  60. 60

    Kotitschke, A., Sadie-Van Gijsen, H., Avenant, C., Fernandes, S. & Hapgood, J. P. Genomic and nongenomic cross talk between the gonadotropin-releasing hormone receptor and glucocorticoid receptor signaling pathways. Mol. Endocrinol. 23, 1726–1745 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61

    Hu, G.-X. et al. Rapid mechanisms of glucocorticoid signaling in the Leydig cell. Steroids 73, 1018–1024 (2008).

    CAS  PubMed  Article  Google Scholar 

  62. 62

    Smith, L. B. & Walker, W. H. The regulation of spermatogenesis by androgens. Semin. Cell Dev. Biol. 30, 2–13 (2014).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Nudell, D. M., Monoski, M. M. & Lipshultz, L. I. Common medications and drugs: how they affect male fertility. Urol. Clin. North Am. 29, 965–973 (2002).

    PubMed  Article  Google Scholar 

  64. 64

    Kaufmann, J. M. & Vermeulen, A. The decline of androgen levels in elderly men and its therapeutic implications. Endocr. Rev. 26, 833–876 (2005).

    Article  CAS  Google Scholar 

  65. 65

    Carreau, S., Bouraima-Lelong, H. & Delalande, C. Role of estrogens in spermatogenesis. Front. Biosci. (Elite Ed.) 4, 1–11 (2012).

    Google Scholar 

  66. 66

    Hautanen, A. Synthesis and regulation of sex hormone-binding globulin in obesity. Int. J. Obes. Relat. Metab. Disord. 24 (Suppl. 2), S64–S70 (2000).

    CAS  PubMed  Article  Google Scholar 

  67. 67

    Russell, D. W. & Wilson, J. D. Steroid 5 alpha-reductase: two genes/two enzymes. Ann. Rev. Biochem. 63, 25–61 (1994).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Amory, J. K. et al. The effect of 5alpha-reductase inhibition with dutasteride and finasteride on semen parameters and serum hormones in healthy men. J. Clin. Endocrinol. Metab. 92, 1659–1665 (2007).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Lund, T. D., Hinds, L. R. & Handa, R. J. The androgen 5α-dihydrotestosterone and its metabolite 5α-dndrostan-3β, 17β-diol inhibit the hypothalamo-pituitary-adrenal response to stress by acting through estrogen receptor β-expressing neurons in the hypothalamus. J. Neurosci. 26, 1448–1456 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70

    Handa, R. J., Kudwa, A. E., Donner, N. C., McGivern, R. F. & Brown, R. Research Report: Central 5-alphareduction oftestosterone is required for testosterone's inhibition of the hypothalamo- pituitary–adrenal axis response to restraint stress in adult male rats. Brain Res. 1529, 74–82 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71

    Labrie, F., Luu-The, V., Labrie, C. & Simard, J. DHEA and its transformation into androgens and estrogens in peripheral tissues: intrcrinology. Front. Neuroendocrinol. 22, 185–212 (2005).

    Article  CAS  Google Scholar 

  72. 72

    Manigner, N., Wolkowitz, O. M., Reus, V. I., Epel, E. S. & Mellon, S. H. neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front. Neuroendocrinol. 30, 65–91 (2009).

    Article  CAS  Google Scholar 

  73. 73

    Kroboth, P. D., Salek, F. S., Pittenger, A. L., Fabian, T. J. & Frye, R. F. DHEA and DHEA-S: a review. J. Clin. Pharmacol. 39, 327–348 (1999).

    CAS  PubMed  Article  Google Scholar 

  74. 74

    Izawa, S., Saito, K., Shirotsuki, K., Sugaya, N. & Nomura, S. Effects of prolonged stress on salivary cortisol and dehydroepiandrosterone: a study of a two-week teaching practice. Psychoneuroendocrinology 37, 852–858 (2012).

    CAS  PubMed  Article  Google Scholar 

  75. 75

    Brzoza, Z. et al. Decline in dehydroepiandrosterone sulphate observed in chronic urticarial is associated with psychological distress. Psychsom. Med. 70, 723–728 (2008).

    CAS  Article  Google Scholar 

  76. 76

    Novaira, H. J., Ng, Y., Wolfe, A. & Radovick, S. Kisspeptin increases GnRH mRNA expression and secretion in GnRH secreting neuronal cell lines. Mol. Cell Endocrinol. 311, 126–134 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Clarkson, J., d'Anglemont de Tassigney, X., Colledge, W. H., Caraty, A. & Herbison, A. E. Distribution of kisspeptin neurons in the adult female mouse brain. J. Neuroendocrinol. 21, 673–682 (2009).

    CAS  PubMed  Article  Google Scholar 

  78. 78

    Landgraf, R. & Neumann, I. D. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front. Neuroendocrinol. 25, 150–176 (2004).

    CAS  PubMed  Article  Google Scholar 

  79. 79

    Rao, Y. S., Mott, N. N. & Pak, T. R. Effects of kisspeptin on parameters of HPA axis. Endocrine 39, 220–228 (2011).

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Ratnasabapathy, R. & Dhillo, W. S. The effects of kisspeptin in human reproductive function—therapeutic implications. Curr. Drug Targets. 14, 365–371 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Wang, O. et al. Glucocorticoids inhibit kisspeptin neurons during stress-induced reproductive inhibition. Endocr. Rev. 32 (Meeting Abstracts), P3–P141 (2011).

    Article  Google Scholar 

  82. 82

    Young, E. A. & Korszun, A. The hypothalamic-pituitary-gonadal axis in mood disorders. Endocrinol. Metab. Clin. North Am. 31, 63–78 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83

    Chandran, U. R. et al. Glucocorticoid receptor-mediated repression of gonadotropin-releasing hormone promoter activity in GT1 hypothalamic cell lines. Endocrinology 134, 1467–1474 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84

    Whirledge, S. & Cidlowski, J. A. Glucocorticoids, Stress, and Fertility. Minerva Endocrinol. 35, 109–125 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Schultz, R. et al. Localization of the glucocorticoid receptor in testis and accessory sexual organs of male rat. Mol. Cell Endocrinol. 95, 115–120 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86

    Vierhapper, H., Nowotny, P. & Waldhausl, W. Production rates of testosterone in patients with Cushing's syndrome. Metabolism 49, 229–231 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87

    Payne, A. H. & Sha, L. L. Multiple mechanisms for regulation of 3b-hydroxysteroid dehydrogenase/D5–D4-isomerase, 17a-hydroxylase/C17–20 lyase cytochrome P450, and cholesterol side-chain cleavage cytochrome P450 messenger ribonucleic acid levels in primary cultures of mouse Leydig cells. Endocrinology 129, 1429–1435 (1991).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88

    Tsutsui, K. et al. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem. Biophys. Res. Commun. 275, 661–667 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89

    Osugi, T., Ubuka, T. & Tsutsui, K. Review: evolution of GnIH and related peptides structure and function in the chordates. Front. Neurosci. http://dx.doi.org/10.3389/fnins.2014.00255 (2014).

  90. 90

    Ubuka, T. et al. Central and direct regulation of testicular activity by gonadotropin-inhibitory hormone and its receptor. Front. Endocrinol. (Lausanne) http://dx.doi.org/10.3389/fendo.2014.00008 (2014).

  91. 91

    Hinuma, S. et al. New neuropeptides containg carboxy-terminal RFamide and their receptor in mammals. Nat. Cell Biol. 2, 703–708 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92

    Bonnini, J. A. et al. Identification and Characterization of two G.-protein coupled receptors for neuropeptide FF. J. Biol. Chem. 275, 3924–3931 (2000).

    Article  Google Scholar 

  93. 93

    Smith, J. T., Young, I. R., Veldhuij, D. & Clark, I. J. Gonadotropin-inhibitory hormone (GnIH) secretion into the ovine hypophseal portal system. Endocrinology 153, 3368–3375 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94

    Chowdhury, V. S. et al. Melatonin stimulates the release of gonadotropin inhibitory hormone by the avian hypothalamus. Endocrinology 151, 271–280 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95

    Gerlo, S., Davis, J. R., Mager, D. L. & Kooijman, R. Prolaction in man: a tale of two promoters. Bioassays 28, 1051–1056 (2006).

    CAS  Article  Google Scholar 

  96. 96

    Gill-Sharma, M. K. Prolactin and male fertility: the long and short feedback regulation. Int. J. Endocrinol. http://dx.doi.org/10.1155/2009/687259 (2009).

  97. 97

    Galdiero, M., Pivonello, R., Grasso, L. F., Cozzolino, A. & Colao, A. Growth hormone, prolactin and sexuality. J. Endocrinol. Invest. 35, 782–794 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  98. 98

    Bachelot, A. & Binart, N. Reproductive role of prolactin. Reproduction 133, 361–369 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99

    Kaiser, U. B. Hyperprolactinaemia and infertility: New insights. J. Clin. Invest. 122, 3467–3468 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100

    Masud, S., Mehboob, F. & Bappi, M. U. Severe hyperprolactinemia directly depresses the gonadal activity causing infertility. Esculapio J. Services Inst. Med. Sci. 2, 25–27 (2007).

    Google Scholar 

  101. 101

    Lennartssen, A. K., Billing, H. & Jonsdottir, I. H. Burnout is associated with elevated prolactin levels in men but not in women. J. Psychosom. Res. 76, 380–383 (2014).

    Article  Google Scholar 

  102. 102

    Lennartssen, A. K. & Jonsdottir, I. H. Prolactin in response to acute psychosocial stress in healthy men and women. Psychoneuroendocrinology 36, 1530–1539 (2011).

    Article  CAS  Google Scholar 

  103. 103

    Rennie, M. J. Review: Claims for the anabolic effects of growth hormone: a case of the emperor's new clothes? Br. J. Sports Med. 37, 100–105 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104

    Bathgate, R. A. D. et al. Relaxin family peptides and their receptors. Physiol. Rev. 93, 405–480 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105

    Meinhardt, U. J. & Ho, K. K. Modulation of growth hormone action by sex steroids. Clin. Endocrinol. (Oxf.) 65, 413–422 (2006).

    CAS  Article  Google Scholar 

  106. 106

    Griffeth, R. J., Bianda, V. & Nef, S. The emerging role of insulin-like growth factors in testis development and function. Basic Clin. Androl. 24, http://dx.doi.org/10.1186/2051-4190-24-12 (2014).

  107. 107

    Vannelli, B. G. et al. Insulin-like growth factor-I (IGF-I) and IGF-I receptor in human testis: an immunohistochemical study. Fertil. Steril. 49, 666–669 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108

    Tsigos, C. & Chrousos, G. P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 53, 865–871 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  109. 109

    Aguilera, G. in Handbook of Neuroendocrinology. Ch. 8 (eds Fink, G., Pfaff, D. W. & Levine, E.) 175–196 (Academic Press, 2011).

    Google Scholar 

  110. 110

    O'Connor, T. M., O'Halloran, D. J. & Shanhan, F. The stress response and the hypothalamic-pituitary-adrenal axis: from molecule to melancholia. QJM 93, 323–333 (2000).

    CAS  Article  Google Scholar 

  111. 111

    Bescós, R., Sureda, A., Tur, J. A. & Pons, A. The effect of nitric-oxide-related supplements on human performance. Sports Med. 42, 99–117 (2012).

    PubMed  Article  Google Scholar 

  112. 112

    Amaral, A. et al. human sperm tail proteome suggests new endogenous metabolic pathways. Mol. Cell Proteomics 12, 330–342 (2013).

    CAS  PubMed  Article  Google Scholar 

  113. 113

    Vignini, A. et al. Production of nitric oxide and peroxynitrite by human spermatozoa and their possible role on sperm motility. Endocrine Abstracts 29, P1055 (2012).

    Google Scholar 

  114. 114

    Althof, S. E. & Needle, R. B. Psychological factors associated with male sexual dysfunction: screening and treatment for the urologist. Urol. Clin. North Am. 38, 141–146 (2011).

    PubMed  Article  Google Scholar 

  115. 115

    Byun, J. S. et al. Sexual dysfunctions induced by stress of timed intercourse and medical treatment. BJU Int. 111, 227–234 (2013).

    Article  Google Scholar 

  116. 116

    Sakamoto, H. et al. Stress affects a gastrin-releasing peptide system in the spinal cord that mediates sexual function: implications for psychogenic erectile dysfunction. PLoS ONE http://dx.doi.org/10.1371/journal.pone.0004276 (2009).

  117. 117

    Collins, M. M. et al. Prevalence and correlates of prostatitis in the health professionals follow up study cohort. J. Urol. 167, 1363–1366 (2002).

    PubMed  Article  Google Scholar 

  118. 118

    Pontari, M. A. & Ruggieri, M. R. Mechanisms in prostatitis/chronic pelvic pain syndrome. J. Urol. 172, 839–845 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  119. 119

    Marconi, M., Pilatz, A., Wagenlehner, F., Diemer, T. & Weidner, W. Impact of infection on the secretory capacity of male accessory glands. Int. Braz. J. Urol. 35, 299–308 (2009).

    CAS  PubMed  Article  Google Scholar 

  120. 120

    Lieb, Z., Bartoov, B., Eltes, F. & Servadio, C. Reduced semen quality caused by chronic abacterial prostatitis: an enigma or reality? Fertil. Steril. 61, 1109–1116 (1994).

    Article  Google Scholar 

  121. 121

    Menkveld, R., Huwe, P., Ludwig, M. & Weidner, W. Morphological sperm alterations in different types of prostatitis. Andrologia 35, 288–293 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  122. 122

    Pasqualotto, F. F. et al. Seminal oxidative stress in patients with chronic prostatitis. Urology 55, 881–885 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  123. 123

    Ludwig, M., Velcovsky, H. G. & Weidner, W. Tuberculous epididymo-orchitis and prostatitis: a case report. Andrologia 40, 81–83 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vinod H. Nargund.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nargund, V. Effects of psychological stress on male fertility. Nat Rev Urol 12, 373–382 (2015). https://doi.org/10.1038/nrurol.2015.112

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing