Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The microbiome of the urinary tract—a role beyond infection

Key Points

  • Contrary to doctrine, the urinary tract is inhabited by a unique urinary microbiota; further research is needed to characterize this microbial community in health and disease

  • Alterations in the urinary microbiota have been linked to urologic disease, such as neurogenic bladder dysfunction, interstitial cystitis and urgency urinary incontinence

  • The microbiome, particularly that of the gut, has a key role in the development and progression of disease within the urinary tract

  • Although early studies of probiotics in patients with nephrolithiasis or bladder cancer have demonstrated variable effectiveness, such alternative treatment strategies focused on reconstituting the microbiome should be further explored

Abstract

Urologists rarely need to consider bacteria beyond their role in infectious disease. However, emerging evidence shows that the microorganisms inhabiting many sites of the body, including the urinary tract—which has long been assumed sterile in healthy individuals—might have a role in maintaining urinary health. Studies of the urinary microbiota have identified remarkable differences between healthy populations and those with urologic diseases. Microorganisms at sites distal to the kidney, bladder and urethra are likely to have a profound effect on urologic health, both positive and negative, owing to their metabolic output and other contributions. Connections between the gut microbiota and renal stone formation have already been discovered. In addition, bacteria are also used in the prevention of bladder cancer recurrence. In the future, urologists will need to consider possible influences of the microbiome in diagnosis and treatment of certain urological conditions. New insights might provide an opportunity to predict the risk of developing certain urological diseases and could enable the development of innovative therapeutic strategies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Definition of the microbiota, metagenome and microbiome as used in this Review.
Figure 2: Potential roles of the urinary microbiota in homeostasis of the urinary tract.

References

  1. 1

    Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Ursell, L. K., Metcalf, J. L., Parfrey, L. W. & Knight, R. Defining the human microbiome. Nutr. Rev. 70 (Suppl. 1), S38–S44 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Lazarevic, V. et al. Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J. Microbiol. Methods 79, 266–271 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Gajer, P. et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4, 132ra52 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Grice, E. A. et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Branton, W. G. et al. Brain microbial populations in HIV/AIDS: α-proteobacteria predominate independent of host immune status. PLoS ONE 8, e54673 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Wolfe, A. J. et al. Evidence of uncultivated bacteria in the adult female bladder. J. Clin. Microbiol. 50, 1376–1383 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Urbaniak, C. et al. Microbiota of human breast tissue. Appl. Environ. Microbiol. 80, 3007–3014 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl. Med. 6, 237ra65 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Sekirov, I., Russell, S. L., Antunes, C. M. & Finlay, B. B. Gut microbiota in health and disease. Physiol. Rev. 90, 859–904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Arends, M. J. Pathways of colorectal carcinogenesis. Appl. Immunohistochem. Mol. Morphol. 21, 97–102 (2013).

    CAS  PubMed  Google Scholar 

  12. 12

    Yang, T., Owen, J. L., Lightfoot, Y. L., Kladde, M. P. & Mohamadzadeh, M. Microbiota impact on the epigenetic regulation of colorectal cancer. Trends Mol. Med. 19, 714–725 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).

    Article  CAS  Google Scholar 

  14. 14

    Gan, X. T. et al. Probiotic administration attenuates myocardial hypertrophy and heart failure following myocardial infarction in the rat. Circ. Heart Fail. 7, 491–499 (2014).

    Article  PubMed  Google Scholar 

  15. 15

    Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5, e9085 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    de Vos, W. M. & Nieuwdorp, M. Genomics: A gut prediction. Nature 498, 48–49 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Hilt, E. E. et al. Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J. Clin. Microbiol. 52, 871–876 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Pearce, M. M. et al. The female urinary microbiome: A comparison of women with and without urgency urinary incontinence. MBio 5, e01283-14 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Fricke, W. F., Maddox, C., Song, Y. & Bromberg, J. S. Human microbiota characterization in the course of renal transplantation. Am. J. Transplant. 14, 416–427 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Nelson, D. E. et al. Bacterial communities of the coronal sulcus and distal urethra of adolescent males. PLoS ONE 7, e36298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Siddiqui, H., Nederbragt, A. J., Lagesen, K., Jeansson, S. L. & Jakobsen, K. S. Assessing diversity of the female urine microbiota by high throughput sequencing of 16S rDNA amplicons. BMC Microbiol. 11, 244 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Siddiqui, H., Lagesen, K., Nederbragt, A. J., Jeansson, S. L. & Jakobsen, K. S. Alterations of microbiota in urine from women with interstitial cystitis. BMC Microbiol. 12, 205 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Fouts, D. E. et al. Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J. Transl. Med. 10, 174 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Nelson, D. E. et al. Characteristic male urine microbiomes associate with asymptomatic sexually transmitted infection. PLoS ONE 5, e14116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Dong, Q. et al. The microbial communities in male first catch urine are highly similar to those in paired urethral swab specimens. PLoS ONE 6, e19709 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Lewis, D. A. et al. The human urinary microbiome; bacterial DNA in voided urine of asymptomatic adults. Front. Cell. Infect. Microbiol. 3, 41 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Willner, D. et al. Single clinical isolates from acute uncomplicated urinary tract infections are representative of dominant in situ populations. MBio 5, e01064-13 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Xu, W. et al. Mini-review: perspective of the microbiome in the pathogenesis of urothelial carcinoma. Am. J. Clin. Exp. Urol. 2, 57–61 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. 30

    Ronald, A. The etiology of urinary tract infection: traditional and emerging pathogens. Am. J. Med. 113 (Suppl. 1A), 14S–19S (2002).

    Article  PubMed  Google Scholar 

  31. 31

    Soriano, F. & Tauch, A. Microbiological and clinical features of Corynebacterium urealyticum: urinary tract stones and genomics as the Rosetta Stone. Clin. Microbiol. Infect. 14, 632–643 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Lee, J. W., Shim, Y. H. & Lee, S. J. Lactobacillus colonization in infants with urinary tract infection. Pediatr. Nephrol. 24, 135–139 (2009).

    Article  PubMed  Google Scholar 

  33. 33

    Latthe, P. M., Toozs-Hobson, P. & Gray, J. Mycoplasma and Ureaplasma colonisation in women with lower urinary tract symptoms. J. Obstet. Gynaecol. 28, 519–521 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Burton, J. P. & Reid, G. Evaluation of the bacterial vaginal flora of 20 postmenopausal women by direct (Nugent score) and molecular (polymerase chain reaction and denaturing gradient gel electrophoresis) techniques. J. Infect. Dis. 186, 1770–1780 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Burton, J. P., McCormick, J. K., Cadieux, P. A. & Reid, G. Digoxigenin-labelled peptide nucleic acid to detect lactobacilli PCR amplicons immobilized on membranes from denaturing gradient gel electrophoresis. Lett. Appl. Microbiol. 36, 145–149 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Di Bella, J. M., Bao, Y., Gloor, G. B., Burton, J. P. & Reid, G. High throughput sequencing methods and analysis for microbiome research. J. Microbiol. Methods 95, 401–414 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Stapleton, A. E. Urinary tract infection pathogenesis: host factors. Infect. Dis. Clin. North Am. 28, 149–159 (2014).

    Article  PubMed  Google Scholar 

  38. 38

    Ragnarsdóttir, B., Lutay, N., Grönberg-Hernandez, J., Köves, B. & Svanborg, C. Genetics of innate immunity and UTI susceptibility. Nat. Rev. Urol. 8, 449–468 (2011).

    Article  PubMed  Google Scholar 

  39. 39

    Kuitunen, M. et al. Probiotics prevent IgE-associated allergy until age 5 years in cesarean-delivered children but not in the total cohort. J. Allergy Clin. Immunol. 123, 335–341 (2009).

    Article  PubMed  Google Scholar 

  40. 40

    Boris, S. & Barbés, C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect. 2, 543–546 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Liévin-Le Moal, V. & Servin, A. L. Anti-Infective Activities of Lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin. Microbiol. Rev. 27, 167–199 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Ott, S. J. et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53, 685–693 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Micheli, A. et al. The advantage of women in cancer survival: an analysis of EUROCARE-4 data. Eur. J. Cancer 45, 1017–1027 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Ghani, K. R. et al. Emergency department visits in the United States for upper urinary tract stones: trends in hospitalization and charges. J. Urol. 191, 90–96 (2014).

    Article  PubMed  Google Scholar 

  46. 46

    Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Monachese, M., Burton, J. P. & Reid, G. Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Appl. Environ. Microbiol. 78, 6397–6404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Nee, L. E. et al. Environmental-occupational risk factors and familial associations in multiple system atrophy: a preliminary investigation. Clin. Auton. Res. 1, 9–13 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Friesen, M. C., Costello, S., Thurston, S. W. & Eisen, E. A. Distinguishing the common components of oil- and water-based metalworking fluids for assessment of cancer incidence risk in autoworkers. Am. J. Ind. Med. 54, 450–460 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Zlaˇvog, A. V. et al. Estimation of ochratoxin A in the human blood of Romanian population. Rev. Med. Chir. Soc. Med. Nat. Iasi 117, 1009–1013 (2013).

    Google Scholar 

  51. 51

    Mirvish, S. S. Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett. 93, 17–48 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. 52

    Cryan, J. F. & O'Mahoney, S. M. The microbiome–gut–brain axis: from bowel to behavior. Neurogastroenterol. Motil. 23, 187–192 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Hooper, L. V. & Gordon, J. I. Commensal host–bacterial relationships in the gut. Science 292, 1115–1118 (2001).

    Article  CAS  Google Scholar 

  54. 54

    Ghartey, J. P. et al. Lactobacillus crispatus dominant vaginal microbiome is associated with inhibitory activity of female genital tract secretions against Escherichia coli. PLoS ONE 9, e96659 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Habash, M. B., Van der Mei, H. C., Busscher, H. J. & Reid, G. The effect of water, ascorbic acid, and cranberry derived supplementation on human urine and uropathogen adhesion to silicone rubber. Can. J. Microbiol. 45, 691–694 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Ferry, S. A., Holm, S. E., Stenlund, H., Lundholm, R. & Monsen, T. J. The natural course of uncomplicated lower urinary tract infection in women illustrated by a randomized placebo controlled study. Scand. J. Infect. Dis. 36, 296–301 (2004).

    Article  PubMed  Google Scholar 

  57. 57

    Nicolle, L. E., Zhanel, G. G. & Harding, G. K. Microbiological outcomes in women with diabetes and untreated asymptomatic bacteriuria. World J. Urol. 24, 61–65 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. 58

    Reid, G. et al. Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat. Rev. Microbiol. 9, 27–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Bleidorn, J., Gágyor, I., Kochen, M. M., Wegscheider, K. & Hummers-Pradier, E. Symptomatic treatment (ibuprofen) or antibiotics (ciprofloxacin) for uncomplicated urinary tract infection?—Results of a randomized controlled pilot trial. BMC Med. 8, 30 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Gágyor, I. et al. Immediate versus conditional treatment of uncomplicated urinary tract infection - a randomized-controlled comparative effectiveness study in general practices. BMC Infect. Dis. 12, 146 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61

    Swann, J. R. et al. Variation in antibiotic-induced microbial recolonization impacts on the host metabolic phenotypes of rats. J. Proteome Res. 10, 3590–3603 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Gupta, A., Dwivedi, M., Mahdi, A. A., Khetrapal, C. L. & Bhandari, M. Broad identification of bacterial type in urinary tract infection using 1H NMR spectroscopy. J. Proteome Res. 11, 1844–1854 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Nevedomskaya, E. et al. 1H NMR-based metabolic profiling of urinary tract infection: combining multiple statistical models and clinical data. Metabolomics 8, 1227–1235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Stapleton, A. E. et al. Recurrent urinary tract infection and urinary Escherichia coli in women ingesting cranberry juice daily: a randomized controlled trial. Mayo Clin. Proc. 87, 143–150 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65

    Scharenberg, M., Schwardt, O., Rabbani, S. & Ernst, B. Target selectivity of FimH Antagonists. J. Med. Chem. 55, 9810–9816 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Virgin, H. W. & Todd, J. A. Metagenomics and personalized medicine. Cell 147, 44–56 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Virgin, H. W. The virome in mammalian physiology and disease. Cell 157, 142–150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Gibs, J. et al. Occurrence and partitioning of antibiotic compounds found in the water column and bottom sediments from a stream receiving two wastewater treatment plant effluents in northern New Jersey, 2008. Sci. Total Environ. 458–460, 107–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Goneau, L. W. et al. Selective target inactivation rather than global metabolic dormancy causes antibiotic tolerance in uropathogens. Antimicrob. Agents Chemother. 58, 2089–2097 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Hummelen, R. et al. Vaginal microbiome and epithelial gene array in post-menopausal women with moderate to severe dryness. PLoS ONE 6, e26602 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Zhu, L. et al. Structural changes in the gut microbiome of constipated patients. Physiol. Genomics 46, 679–686 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. 73

    Heinemann, C. & Reid, G. Vaginal microbial diversity among postmenopausal women with and without hormone replacement therapy. Can. J. Microbiol. 51, 777–781 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. 74

    Com, E. et al. Expression of antimicrobial defensins in the male reproductive tract of rats, mice, and humans. Biol. Reprod. 68, 95–104 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Gupta, K., Hillier, S. L., Hooton, T. M., Roberts, P. L. & Stamm, W. E. Effects of contraceptive method on the vaginal flora: a prospective evaluation. J. Infect. Dis. 181, 595–601 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    McGroarty, J. A., Tomeczek, L., Pond, D. G., Reid, G. & Bruce, A. W. Hydrogen peroxide production by Lactobacillus species: correlation with susceptibility to the spermicidal compound nonoxynol-9. J. Infect. Dis. 165, 1142–1144 (1992).

    Article  CAS  PubMed  Google Scholar 

  77. 77

    Keeney, K. M., Yurist-Doutsch, S., Arrieta, M. C. & Finlay, B. B. Effects of antibiotics on human microbiota and subsequent disease. Annu. Rev. Microbiol. 68, 217–235 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    Cornick, N. A. & Allison, M. J. Anabolic incorporation of oxalate by Oxalobacter formigenes. Appl. Environ. Microbiol. 62, 3011–3013 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Siener, R. et al. The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int. 83, 1144–1149 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Jiang, J. et al. Impact of dietary calcium and oxalate, and Oxalobacter formigenes colonization on urinary oxalate excretion. J. Urol. 186, 135–139 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Kaufman, D. W. et al. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J. Am. Soc. Nephrol. 19, 1197–1203 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Kelly, J. P., Curhan, G. C., Cave, D. R., Anderson, T. E. & Kaufman, D. W. Factors related to colonization with Oxalobacter formigenes in U.S. adults. J. Endourol. 25, 673–679 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83

    Hatch, M., Gjymishka, A., Saliido, E. C., Allison, M. J. & Freel, R. W. Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G461–G469 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. 84

    Sidhu, H., Allison, M. J., Chow, J. M., Clark, A. & Peck, A. B. Rapid reversal of hyperoxaluria in a rat model after probiotic administration of Oxalobacter formigenes. J. Urol. 166, 1487–1491 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. 85

    Freel, R. W., Hatch, M., Green, M. & Soleimani, M. Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice. Am. J. Physiol. Gastrointest. Liver Physiol. 209, G719–G728 (2006).

    Article  CAS  Google Scholar 

  86. 86

    Cornelius, J. G. & Peck, A. B. Colonization of the neonatal rat intestinal tract from environmental exposure to the anaerobic bacterium Oxalobacter formigenes. J. Med. Microbiol. 53, 249–254 (2004).

    Article  PubMed  Google Scholar 

  87. 87

    Sikora, P. et al. Intestinal colonization with Oxalobacter formigenes and its relation to urinary oxalate excretion in pediatric patients with idiopathic calcium urolithiasis. Arch. Med. Res. 40, 369–373 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. 88

    Sidhu, H. et al. Evaluating children in the Ukraine for colonization with the intestinal bacterium Oxalobacter formigenes, using a polymerase chain reaction-based detection system. Mol. Diagn. 2, 89–97 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. 89

    Sidhu, H. et al. Absence of Oxalobacter formigenes in cystic fibrosis patients: a risk factor for hyperoxaluria. Lancet 352, 1026–1029 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. 90

    Borghi, L., Nouvenne, A. & Meschi, T. Probiotics and dietary manipulations in calcium oxalate nephrolithiasis: two sides of the same coin? Kidney Int. 78, 1063–1065 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. 91

    Sidhu, H. et al. Direct correlation between hyperoxaluria/oxalate stone disease and the absence of the gastrointestinal tract-dwelling bacterium Oxalobacter formigenes: possible prevention by gut recolonization or enzyme replacement therapy. J. Am. Soc. Nephrol. 10 (Suppl. 14), S334–S340 (1999).

    CAS  PubMed  Google Scholar 

  92. 92

    Knight, J., Deora, R., Assimos, D. G. & Holmes, R. P. The genetic composition of Oxalobacter formigenes and its relationship to colonization and calcium oxalate stone disease. Urolithiasis 41, 187–196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Duncan, S. H. et al. Oxalobacter formigenes and its potential role in human health. Appl. Environ. Microbiol. 68, 3841–3847 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Hoppe, B. et al. Oxalobacter formigenes: a potential tool for the treatment of primary hyperoxaluria type 1. Kidney Int. 70, 1305–1311 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Lieske, J. C. et al. Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int. 78, 1178–1185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Okombo, J. & Liebman, M. Probiotic-induced reduction of gastrointestinal oxalate absorption in healthy subjects. Urol. Res. 38, 169–178 (2010).

    Article  PubMed  Google Scholar 

  97. 97

    Ferraz, R. R. et al. Effects of Lactobacillus casei and Bifidobacterium breve on urinary oxalate excretion in nephrolithiasis patients. Urol. Res. 37, 95–100 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. 98

    Goldfarb, D. S., Modersitzki, F. & Asplin, J. R. A randomized, controlled trial of lactic acid bacteria for idiopathic hyperoxaluria. Clin. J. Am. Soc. Nephrol. 2, 745–749 (2007).

    Article  PubMed  Google Scholar 

  99. 99

    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  100. 100

    Campieri, C. et al. Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration. Kidney Int. 60, 1097–1105 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. 101

    Cho, E., Adami, H. O. & Lindblad, P. Epidemiology of renal cell cancer. Hematol. Oncol. Clin. North Am. 25, 651–665 (2011).

    Article  PubMed  Google Scholar 

  102. 102

    Stamatelou, K. K., Francis, M. E., Jones, C. A., Nyberg, L. M. & Curhan, G. C. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 63, 1817–1823 (2003).

    Article  PubMed  Google Scholar 

  103. 103

    Gorbachinsky, I., Akpinar, H. & Assimos, D. G. Metabolic syndrome and urologic diseases. Rev. Urol. 12, e157–e180 (2010).

    PubMed  PubMed Central  Google Scholar 

  104. 104

    Niwa, T. et al. The protein metabolite hypothesis, a model for the progression of renal failure: an oral adsorbent lowers indoxyl sulfate levels in undialyzed uremic patients. Kidney Int. Suppl. 62, S23–S28 (1997).

    CAS  PubMed  Google Scholar 

  105. 105

    Schepers, E., Glorieux, G. & Vanholder, R. The gut: the forgotten organ in uremia? Blood Purif. 29, 130–136 (2010).

    Article  PubMed  Google Scholar 

  106. 106

    Poesen, R., Meijers, B. & Evenepoel, P. The colon: an overlooked site for therapeutics in dialysis patients. Semin. Dial. 26, 323–332 (2013).

    Article  PubMed  Google Scholar 

  107. 107

    Satoh, M. et al. Uremic toxins overload accelerates renal damage in a rat model of chronic renal failure. Nephron Exp. Nephrol. 95, e111–e118 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. 108

    Evenepoel, P., Meijers, B. K., Bammens, B. R. & Verbeke, K. Uremic toxins originating from colonic microbial metabolism. Kidney Int. Suppl. 76, S12–S19 (2009).

    Article  CAS  Google Scholar 

  109. 109

    Hoesl, C. E. & Altwein, J. E. The probiotic approach: an alternative treatment option in urology. Eur. Urol. 47, 288–296 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. 110

    Fahmy, N., Lazo-Langner, A., Iansavichene, A. E. & Pautler, S. E. Effect of anticoagulants and antiplatelet agents on the efficacy of intravesical BCG treatment of bladder cancer: a systematic review. Can. Urol. Assoc. J. 7, E740–E749 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  111. 111

    Ratliff, T. L., Palmer, J. O., McGarr, J. A. & Brown, E. J. Intravesical bacillus Calmette-Guérin therapy for murine bladder tumors: initiation of the response by fibronectin-mediate attachment of bacillus Calmette-Guérin. Cancer Res. 47, 1762–1766 (1987).

    CAS  PubMed  Google Scholar 

  112. 112

    Kuroda, K., Brown, E. J., Telle, W. B., Russell, D. G. & Ratliff, T. L. Characterization of the bacillus Calmette-Guérin by human bladder tumor cells. J. Clin. Invest. 91, 69–76 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Chen, F., Zhang, G., Iwamoto, Y. & See, W. A. BCG directly induces cell cycle arrest in human transitional carcinoma cell lines as a consequence of integrin cross-linking. BMC Urol. 5, 8 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  114. 114

    Pook, S. H., Rahmat, J. N., Esuvaranathan, K. & Mahendran, R. Internalization of Mycobacterium bovis, bacillus Calmette-Guérin, by bladder cells is cytotoxic. Oncol. Rep. 18, 1315–1320 (2007).

    CAS  PubMed  Google Scholar 

  115. 115

    Rahmat, J. N., Esuvaranathan, K. & Mahendran, R. Bacillus Calmette-Guérin induces cellular reactive oxygen species and lipid peroxidation in cancer cells. Urology 79, 1411.e15–1411.e20 (2012).

    Article  Google Scholar 

  116. 116

    McMillan, A., Macklaim, J. M., Burton, J. P. & Reid, G. Adhesion of Lactobacillus iners AB-1 to human fibronectin: a key mediator for persistence in the vagina? Reprod. Sci. 20, 791–796 (2013).

    Article  PubMed  Google Scholar 

  117. 117

    Cosseau, C. et al. The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host–microbe homeostasis. Infect. Immun. 76, 4163–4175 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Lamm, D. L. Efficacy and safety of bacille Calmette-Guérin immunotherapy in superficial bladder cancer. Clin. Infect. Dis. 31 (Suppl. 3), S86–S90 (2000).

    Article  PubMed  Google Scholar 

  119. 119

    Kato, I., Kobayashi, S., Yokokura, T. & Mutai, M. Antitumor activity of Lactobacillus casei in mice. Gan 72, 517–523 (1981).

    CAS  PubMed  Google Scholar 

  120. 120

    Tomita, K. et al. Influence of Lactobacillus casei on rat bladder carcinogenesis [Japanese]. Nihon Hinyokika Gakkai Zasshi 85, 655–663 (1994).

    CAS  PubMed  Google Scholar 

  121. 121

    Takahashi, T. et al. Antitumor effects of the intravesical instillation of heat killed cells of the Lactobacillus casei strain Shirota on the murine orthotopic bladder tumor MBT-2. J. Urol. 166, 2506–2511 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. 122

    Seow, S. W., Rahmat, J. N., Bay, B. H., Lee, Y. K. & Mahendran, R. Expression of chemokine/cytokine genes and immune cell recruitment following the instillation of Mycobacterium bovis, bacillus Calmette-Guérin or Lactobacillus rhamnosus strain GG in the healthy murine bladder. Immunology 124, 419–427 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Seow, S. W. et al. Lactobacillus species is more cytotoxic to human bladder cancer cells than Mycobacterium bovis (bacillus Calmette-Guérin). J. Urol. 168, 2236–2239 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. 124

    Aso, Y. & Akazan, H. Prophylactic effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer. BLP Study Group. Urol. Int. 49, 125–129 (1992).

    Article  CAS  PubMed  Google Scholar 

  125. 125

    de Martel, C. et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 13, 607–615 (2012).

    Article  PubMed  Google Scholar 

  126. 126

    Schwabe, R. F. & Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 13, 800–812 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Gagliani, N., Hu, B., Huber, S., Elinav, E. & Flavell, R. A. The fire within: microbes inflame tumors. Cell 157, 776–783 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. 128

    Irrazábal, T., Belcheva, A., Girardin, S. E., Martin, A. & Philpott, D. J. The multifaceted role of the intestinal microbiota in colon cancer. Mol. Cell 54, 309–320 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. 129

    Stapleton, A. E. et al. Randomized, placebo-controlled phase 2 trial of a Lactobacillus crispatus probiotic given intravaginally for prevention of recurrent urinary tract infection. Clin. Infect. Dis. 52, 1212–1217 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  130. 130

    Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916. e7 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. 131

    Youngster, I. et al. Fecal microbiota transplant for relapsing Clostridium difficile infection using a frozen inoculum from unrelated donors: a randomized, open-label, controlled pilot study. Clin. Infect. Dis. 58, 1515–1522 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  132. 132

    Allen-Vercoe, E. Bringing the gut microbiota into focus through microbial culture: recent progress and future perspective. Curr. Opin. Microbiol. 16, 625–629 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research work was supported by The W. Garfield Weston Foundation.

Author information

Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Jeremy P. Burton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Whiteside, S., Razvi, H., Dave, S. et al. The microbiome of the urinary tract—a role beyond infection. Nat Rev Urol 12, 81–90 (2015). https://doi.org/10.1038/nrurol.2014.361

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing