Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Male infertility: a public health issue caused by sexually transmitted pathogens

Key Points

  • Sexually transmitted diseases (STDs) can induce male infertility through multiple pathophysiological mechanisms

  • Several STD-causing agents, including bacteria, viruses and protozoa have been detected in semen from symptomatic and asymptomatic males, and can be transmitted through natural intercourse or insemination

  • STD pathogens can affect sperm parameters and functions, particularly when testicular, accessory gland and urethral infections localize the disease agents in proximity to semen

  • Several highly sensitive and specific molecular methods are now available to explore the relationship between infertility and infections of semen with STD pathogens

  • Chlamydia trachomatis, Ureaplasma spp., human papillomavirus, hepatitis B and C viruses, HIV-1 and human cytomegalovirus are associated with reduced sperm quality, concentration and motility

Abstract

Sexually transmitted diseases (STDs) are caused by several pathogens, including bacteria, viruses and protozoa, and can induce male infertility through multiple pathophysiological mechanisms. Additionally, horizontal transmission of STD pathogens to sexual partners or vertical transmission to fetuses and neonates is possible. Chlamydia trachomatis, Ureaplasma spp., human papillomavirus, hepatitis B and hepatitis C viruses, HIV-1 and human cytomegalovirus have all been detected in semen from symptomatic and asymptomatic men with testicular, accessory gland and urethral infections. These pathogens are associated with poor sperm quality and decreased sperm concentration and motility. However, the effects of these STD agents on semen quality are unclear, as are the effects of herpes simplex virus type 1 and type 2, Neisseria gonorrhoeae, Mycoplasma spp., Treponema pallidum and Trichomonas vaginalis, because few studies have evaluated the influence of these pathogens on male infertility. Chronic or inadequately treated infections seem to be more relevant to infertility than acute infections are, although in many cases the exact aetiological agents remain unknown.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2: Sexually transmitted disease loci in the male genital tract and their relation to infertility.
Figure 3: Interaction of sexually transmitted disease pathogens with spermatogenic cells and spermatozoa.

References

  1. 1

    Ochsendorf, F. R. Sexually transmitted infections: impact on male fertility. Andrologia 40, 72–75 (2008).

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Muvunyi, C. M. et al. Decreased susceptibility to commonly used antimicrobial agents in bacterial pathogens isolated from urinary tract infections in Rwanda: need for new antimicrobial guidelines. Am. J. Trop. Med. Hyg. 84, 923–928 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Garolla, A. et al. Sperm viral infection and male infertility: focus on HBV, HCV, HIV, HPV, HSV, HCMV, and AAV. J. Reprod. Immunol. 100, 20–29 (2013).

    Article  PubMed  Google Scholar 

  4. 4

    Rowe, P. J., Comhaire, F. H., Hargreave, T. B. & Mahmoud, A. M. A. WHO manual for the standardized investigation, diagnosis and management of the infertile male (Cambridge University Press, 2000).

    Google Scholar 

  5. 5

    Brookings, C., Goldmeier, D. & Sadeghi-Nejad, H. Sexually transmitted infections and sexual function in relation to male fertility. Korean J. Urol. 54, 149–156 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Monavari, S. H. et al. Asymptomatic seminal infection of herpes simplex virus: impact on male infertility. J. Biomed. Res. 27, 56–61 (2013).

    PubMed  Google Scholar 

  7. 7

    Muciaccia, B. et al. HIV-1 viral DNA is present in ejaculated abnormal spermatozoa of seropositive subjects. Hum. Reprod. 22, 2868–2878 (2007).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Al-Daghistani, H. I., Hamad, A. W., Abdel-Dayem, M., Al-Swaifi, M. & Abu Zaid, M. Evaluation of serum testosterone, progesterone, seminal antisperm antibody, and fructose levels among Jordanian males with a history of infertility. Biochem. Res. Int. 2010, 409640 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. 9

    Lee, J. S. et al. Concordance of Ureaplasma urealyticum and Mycoplasma hominis in infertile couples: impact on semen parameters. Urology 81, 1219–1224 (2013).

    Article  PubMed  Google Scholar 

  10. 10

    Pekler, V. A. et al. Use of versant TMA and bDNA 3.0 assays to detect and quantify hepatitis C virus in semen. J. Clin. Lab. Anal. 17, 264–270 (2003).

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Kapranos, N., Petrakou, E., Anastasiadou, C. & Kotronias, D. Detection of herpes simplex virus, cytomegalovirus, and Epstein-Barr virus in the semen of men attending an infertility clinic. Fertil. Steril. 79 (Suppl. 3), 1566–1570 (2003).

    Article  PubMed  Google Scholar 

  12. 12

    Hamdad-Daoudi, F., Petit, J. & Eb, F. Assessment of Chlamydia trachomatis infection in asymptomatic male partners of infertile couples. J. Med. Microbiol. 53, 985–990 (2004).

    Article  PubMed  Google Scholar 

  13. 13

    Bayasgalan, G., Naranbat, D., Radnaabazar, J., Lhagvasuren, T. & Rowe, P. J. Male infertility: risk factors in Mongolian men. Asian J. Androl. 6, 305–311 (2004).

    CAS  PubMed  Google Scholar 

  14. 14

    Bezold, G. et al. Prevalence of sexually transmissible pathogens in semen from asymptomatic male infertility patients with and without leukocytospermia. Fertil. Steril. 87, 1087–1097 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Rusz, A. et al. Influence of urogenital infections and inflammation on semen quality and male fertility. World J. Urol. 30, 23–30 (2012).

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Moretti, E., Federico, M. G., Giannerini, V. & Collodel, G. Sperm ultrastructure and meiotic segregation in a group of patients with chronic hepatitis B and C. Andrologia 40, 286–291 (2008).

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Grunewald, S. et al. Caspase activation in human spermatozoa in response to physiological and pathological stimuli. Fertil. Steril. 83 (Suppl. 1), 1106–1112 (2005).

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Koppers, A. J., De Iuliis, G. N., Finnie, J. M., McLaughlin, E. A. & Aitken, R. J. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J. Clin. Endocrinol. Metab. 93, 3199–3207 (2008).

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Ricci, G. et al. Apoptosis in human sperm: its correlation with semen quality and the presence of leukocytes. Hum. Reprod. 17, 2665–2672 (2002).

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Moustafa, M. H. et al. Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. Hum. Reprod. 19, 129–138 (2004).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Ochsendorf, F. R. Infections in the male genital tract and reactive oxygen species. Hum. Reprod. Update 5, 399–420 (1999).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Flesch, F. M. & Gadella, B. M. Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochim. Biophys. Acta 1469, 197–235 (2000).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Souza, R. P. et al. Simultaneous detection of seven sexually transmitted agents in human immunodeficiency virus-infected Brazilian women by multiplex polymerase chain reaction. Am. J. Trop. Med. Hyg. 89, 1199–1202 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  24. 24

    Rybar, R. et al. The effect of bacterial contamination of semen on sperm chromatin integrity and standard semen parameters in men from infertile couples. Andrologia 44 (Suppl. 1), 410–418 (2012).

    Article  PubMed  Google Scholar 

  25. 25

    Villegas, J., Schulz, M., Soto, L. & Sanchez, R. Bacteria induce expression of apoptosis in human spermatozoa. Apoptosis 10, 105–110 (2005).

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Isaiah, I. N., Nche, B. T., Nwagu, I. G. & Nnanna, I. I. Current studies on bacterospermia the leading cause of male infertility: a protégé and potential threat towards mans extinction. N. Am. J. Med. Sci. 3, 562–564 (2011).

    PubMed  PubMed Central  Google Scholar 

  27. 27

    Cunningham, K. A. & Beagley, K. W. Male genital tract chlamydial infection: implications for pathology and infertility. Biol. Reprod. 79, 180–189 (2008).

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Mylonas, I. Female genital Chlamydia trachomatis infection: where are we heading? Arch. Gynecol. Obstet. 285, 1271–1285 (2012).

    Article  PubMed  Google Scholar 

  29. 29

    Senior, K. Chlamydia: a much underestimated STI. Lancet Infect. Dis. 12, 517–518 (2012).

    Article  PubMed  Google Scholar 

  30. 30

    Mackern-Oberti, J. P. et al. Chlamydia trachomatis infection of the male genital tract: an update. J. Reprod. Immunol. 100, 37–53 (2013).

    Article  PubMed  Google Scholar 

  31. 31

    LaMontagne, D. S., Fenton, K. A., Randall, S., Anderson, S. & Carter, P. Establishing the National Chlamydia Screening Programme in England: results from the first full year of screening. Sex. Transm. Infect. 80, 335–341 (2004).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  32. 32

    Gdoura, R. et al. Assessment of Chlamydia trachomatis, Ureaplasma urealyticum, Ureaplasma parvum, Mycoplasma hominis, and Mycoplasma genitalium in semen and first void urine specimens of asymptomatic male partners of infertile couples. J. Androl. 29, 198–206 (2008).

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Abusarah, E. A., Awwad, Z. M., Charvalos, E. & Shehabi, A. A. Molecular detection of potential sexually transmitted pathogens in semen and urine specimens of infertile and fertile males. Diagn. Microbiol. Infect. Dis. 77, 283–286 (2013).

    Article  PubMed  Google Scholar 

  34. 34

    Nadala, E. C. et al. Performance evaluation of a new rapid urine test for chlamydia in men: prospective cohort study. BMJ 339, b2655 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Kalwij, S., French, S., Mugezi, R. & Baraitser, P. Using educational outreach and a financial incentive to increase general practices' contribution to chlamydia screening in South-East London 2003–2011. BMC Public Health 12, 802 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Ibrahim, A. A., Refeidi, A. & El Mekki, A. A. Etiology and clinical features of acute epididymo-orchitis. Ann. Saudi Med. 16, 171–174 (1996).

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Dale, A. W., Wilson, J. D., Forster, G. E., Daniels, D. & Brook, M. G. Management of epididymo-orchitis in Genitourinary Medicine clinics in the United Kingdom's North Thames region 2000. Int. J. STD AIDS 12, 342–345 (2001).

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Furuya, R. et al. Is seminal vesiculitis a discrete disease entity? Clinical and microbiological study of seminal vesiculitis in patients with acute epididymitis. J. Urol. 171, 1550–1553 (2004).

    Article  PubMed  Google Scholar 

  39. 39

    Eley, A., Pacey, A. A., Galdiero, M., Galdiero, M. & Galdiero, F. Can Chlamydia trachomatis directly damage your sperm? Lancet Infect. Dis. 5, 53–57 (2005).

    Article  PubMed  Google Scholar 

  40. 40

    Trojian, T. H., Lishnak, T. S. & Heiman, D. Epididymitis and orchitis: an overview. Am. Fam. Physician 79, 583–587 (2009).

    PubMed  Google Scholar 

  41. 41

    Mackern Oberti, J. P. et al. Chemokine response induced by Chlamydia trachomatis in prostate derived CD45+ and CD45− cells. Reproduction 142, 427–437 (2011).

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Motrich, R. D., Sanchez, L., Maccioni, M., Mackern-Oberti, J. P. & Rivero, V. E. Male rat genital tract infection with Chlamydia muridarum has no significant consequence on male fertility. J. Urol. 187, 1911–1917 (2012).

    Article  PubMed  Google Scholar 

  43. 43

    Pate, M. S. et al. Urethral cytokine and immune responses in Chlamydia trachomatis-infected males. Infect. Immun. 69, 7178–7181 (2001).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  44. 44

    Al-Mously, N. & Eley, A. Interaction of Chlamydia trachomatis serovar E with male genital tract epithelium results in secretion of proinflammatory cytokines. J. Med. Microbiol. 56, 1025–1032 (2007).

    CAS  Article  PubMed  Google Scholar 

  45. 45

    Geisler, W. M. Duration of untreated, uncomplicated Chlamydia trachomatis genital infection and factors associated with chlamydia resolution: a review of human studies. J. Infect. Dis. 201 (Suppl. 2), S104–S113 (2010).

    Article  PubMed  Google Scholar 

  46. 46

    Taylor, B. D. & Haggerty, C. L. Management of Chlamydia trachomatis genital tract infection: screening and treatment challenges. Infect. Drug Resist. 4, 19–29 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Mackern-Oberti, J. P. et al. Innate immunity in the male genital tract: Chlamydia trachomatis induces keratinocyte-derived chemokine production in prostate, seminal vesicle and epididymis/vas deferens primary cultures. J. Med. Microbiol. 60, 307–316 (2011).

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Karinen, L. et al. Association between Chlamydia trachomatis antibodies and subfertility in the Northern Finland Birth Cohort 1966 (NFBC 1966), at the age of 31 years. Epidemiol. Infect. 132, 977–984 (2004).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  49. 49

    Joki-Korpela, P. et al. The role of Chlamydia trachomatis infection in male infertility. Fertil. Steril. 91, 1448–1450 (2009).

    Article  PubMed  Google Scholar 

  50. 50

    Mazzoli, S. et al. Chlamydia trachomatis infection is related to poor semen quality in young prostatitis patients. Eur. Urol. 57, 708–714 (2010).

    Article  PubMed  Google Scholar 

  51. 51

    Pajovic, B., Radojevic, N., Vukovic, M. & Stjepcevic, A. Semen analysis before and after antibiotic treatment of asymptomatic Chlamydia- and Ureaplasma-related pyospermia. Andrologia 45, 266–271 (2013).

    CAS  Article  PubMed  Google Scholar 

  52. 52

    Motrich, R. D., Cuffini, C., Oberti, J. P., Maccioni, M. & Rivero, V. E. Chlamydia trachomatis occurrence and its impact on sperm quality in chronic prostatitis patients. J. Infect. 53, 175–183 (2006).

    Article  PubMed  Google Scholar 

  53. 53

    de Barbeyrac, B. et al. Chlamydia trachomatis in subfertile couples undergoing an in vitro fertilization program: a prospective study. Eur. J. Obstet. Gynecol. Reprod. Biol. 129, 46–53 (2006).

    Article  PubMed  Google Scholar 

  54. 54

    Henkel, R. et al. Chronic pelvic pain syndrome/chronic prostatitis affect the acrosome reaction in human spermatozoa. World J. Urol. 24, 39–44 (2006).

    Article  PubMed  Google Scholar 

  55. 55

    Villegas, H., Piñon, M., Shor, V. & Karchmer, S. Electron microscopy of Chlamydia trachomatis infection of the male genital tract. Arch. Androl. 27, 117–126 (1991).

    CAS  Article  PubMed  Google Scholar 

  56. 56

    Erbengi, T. Ultrastructural observations on the entry of Chlamydia trachomatis into human spermatozoa. Hum. Reprod. 8, 416–421 (1993).

    CAS  Article  PubMed  Google Scholar 

  57. 57

    Hosseinzadeh, S., Brewis, I. A., Eley, A. & Pacey, A. A. Co-incubation of human spermatozoa with Chlamydia trachomatis serovar E causes premature sperm death. Hum. Reprod. 16, 293–299 (2001).

    CAS  Article  PubMed  Google Scholar 

  58. 58

    Satta, A. et al. Experimental Chlamydia trachomatis infection causes apoptosis in human sperm. Hum. Reprod. 21, 134–137 (2006).

    Article  PubMed  Google Scholar 

  59. 59

    Hosseinzadeh, S., Pacey, A. A. & Eley, A. Chlamydia trachomatis-induced death of human spermatozoa is caused primarily by lipopolysaccharide. J. Med. Microbiol. 52, 193–200 (2003).

    CAS  Article  PubMed  Google Scholar 

  60. 60

    Hosseinzadeh, S., Brewis, I. A., Pacey, A. A., Moore, H. D. & Eley, A. Coincubation of human spermatozoa with Chlamydia trachomatis in vitro causes increased tyrosine phosphorylation of sperm proteins. Infect. Immun. 68, 4872–4876 (2000).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  61. 61

    Idahl, A., Boman, J., Kumlin, U. & Olofsson, J. I. Demonstration of Chlamydia trachomatis IgG antibodies in the male partner of the infertile couple is correlated with a reduced likelihood of achieving pregnancy. Hum. Reprod. 19, 1121–1126 (2004).

    CAS  Article  PubMed  Google Scholar 

  62. 62

    Veznik, Z., Pospisil, L., Svecova, D., Zajicova, A. & Unzeitig, V. Chlamydiae in the ejaculate: their influence on the quality and morphology of sperm. Acta Obstet. Gynecol. Scand. 83, 656–660 (2004).

    Article  PubMed  Google Scholar 

  63. 63

    Al-Mously, N., Cross, N. A., Eley, A. & Pacey, A. A. Real-time polymerase chain reaction shows that density centrifugation does not always remove Chlamydia trachomatis from human semen. Fertil. Steril. 92, 1606–1615 (2009).

    Article  PubMed  Google Scholar 

  64. 64

    La Vignera, S., Condorelli, R. A., Vicari, E., D'Agata, R. & Calogero, A. E. Sperm DNA damage in patients with chronic viral C hepatitis. Eur. J. Intern. Med. 23, e19–e24 (2012).

    CAS  Article  PubMed  Google Scholar 

  65. 65

    Jungwirth, A., Straberger, A., Esterbauer, B., Fink, K. & Schmeller, N. Acrosome reaction in Chlamydia-positive and negative patients. Andrologia 35, 314–316 (2003).

    CAS  Article  PubMed  Google Scholar 

  66. 66

    Gallegos-Avila, G. et al. Phagocytosis of spermatozoa and leucocytes by epithelial cells of the genital tract in infertile men infected with Chlamydia trachomatis and mycoplasmas. Histopathology 55, 232–234 (2009).

    Article  PubMed  Google Scholar 

  67. 67

    Ouzounova-Raykova, V., Ouzounova, I. & Mitov, I. G. May Chlamydia trachomatis be an aetiological agent of chronic prostatic infection? Andrologia 42, 176–181 (2010).

    CAS  Article  PubMed  Google Scholar 

  68. 68

    Segnini, A., Camejo, M. I. & Proverbio, F. Chlamydia trachomatis and sperm lipid peroxidation in infertile men. Asian J. Androl. 5, 47–49 (2003).

    CAS  PubMed  Google Scholar 

  69. 69

    Habermann, B. & Krause, W. Altered sperm function or sperm antibodies are not associated with chlamydial antibodies in infertile men with leucocytospermia. J. Eur. Acad. Dermatol. Venereol. 12, 25–29 (1999).

    CAS  Article  PubMed  Google Scholar 

  70. 70

    Vigil, P., Morales, P., Tapia, A., Riquelme, R. & Salgado, A. M. Chlamydia trachomatis infection in male partners of infertile couples: incidence and sperm function. Andrologia 34, 155–161 (2002).

    CAS  Article  PubMed  Google Scholar 

  71. 71

    Eggert-Kruse, W. et al. Prevalence of Chlamydia trachomatis in subfertile couples. Fertil. Steril. 80, 660–663 (2003).

    Article  PubMed  Google Scholar 

  72. 72

    Korenromp, E. L. et al. What proportion of episodes of gonorrhoea and chlamydia becomes symptomatic? Int. J. STD AIDS 13, 91–101 (2002).

    Article  PubMed  Google Scholar 

  73. 73

    World Health Organization. Prevalence and incidence of selected sexually transmitted infections, Chlamydia trachomatis, Neisseria gonorrhoeae, syphilis and Trichomonas vaginalis: methods and results used by WHO to generate 2005 estimates [online], (2011).

  74. 74

    Rodriguez-Tirado, C. et al. Neisseria gonorrhoeae induced disruption of cell junction complexes in epithelial cells of the human genital tract. Microbes Infect. 14, 290–300 (2012).

    CAS  Article  PubMed  Google Scholar 

  75. 75

    Parti, R. P., Horbay, M. A., Liao, M. & Dillon, J. A. Regulation of minD by oxyR in Neisseria gonorrhoeae. Res. Microbiol. 164, 406–415 (2013).

    CAS  Article  PubMed  Google Scholar 

  76. 76

    Fang, L., Oliver, A., Jayaraman, G. C. & Wong, T. Trends in age disparities between younger and middle-age adults among reported rates of chlamydia, gonorrhea, and infectious syphilis infections in Canada: findings from 1997 to 2007. Sex. Transm. Dis. 37, 18–25 (2010).

    Article  PubMed  Google Scholar 

  77. 77

    Ehrhardt, A. A., Bolan, G. & Wasserheit, J. N. in Sexually transmitted diseases. 3rd edn Ch. 8 (eds Holmes, K. K. et al.) 117–127 (McGraw-Hill, 1999).

    Google Scholar 

  78. 78

    Edwards, J. L. & Apicella, M. A. The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin. Microbiol. Rev. 17, 965–981 (2004).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  79. 79

    Mlisana, K. et al. Symptomatic vaginal discharge is a poor predictor of sexually transmitted infections and genital tract inflammation in high-risk women in South Africa. J. Infect. Dis. 206, 6–14 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80

    Kline, K. A., Sechman, E. V., Skaar, E. P. & Seifert, H. S. Recombination, repair and replication in the pathogenic Neisseriae: the 3 R's of molecular genetics of two human-specific bacterial pathogens. Mol. Microbiol. 50, 3–13 (2003).

    CAS  Article  PubMed  Google Scholar 

  81. 81

    Pellati, D. et al. Genital tract infections and infertility. Eur. J. Obstet. Gynecol. Reprod. Biol. 140, 3–11 (2008).

    Article  PubMed  Google Scholar 

  82. 82

    Radek, S. et al. Bacterial infection as a cause of infertility in humans [Czech]. Epidemiol. Mikrobiol. Imunol. 62, 26–32 (2013).

    Google Scholar 

  83. 83

    Dohle, G. R. Inflammatory-associated obstructions of the male reproductive tract. Andrologia 35, 321–324 (2003).

    CAS  Article  PubMed  Google Scholar 

  84. 84

    Osegbe, D. N. Testicular function after unilateral bacterial epididymo-orchitis. Eur. Urol. 19, 204–208 (1991).

    CAS  Article  PubMed  Google Scholar 

  85. 85

    Ludwig, M. Diagnosis and therapy of acute prostatitis, epididymitis and orchitis. Andrologia 40, 76–80 (2008).

    CAS  Article  PubMed  Google Scholar 

  86. 86

    Akre, O. et al. Human fertility does not decline: evidence from Sweden. Fertil. Steril. 71, 1066–1069 (1999).

    CAS  Article  PubMed  Google Scholar 

  87. 87

    Fox, K. K. et al. Longitudinal evaluation of serovar-specific immunity to Neisseria gonorrhoeae. Am. J. Epidemiol. 149, 353–358 (1999).

    CAS  Article  PubMed  Google Scholar 

  88. 88

    Zhu, W. et al. Neisseria gonorrhoeae suppresses dendritic cell-induced, antigen-dependent CD4 T cell proliferation. PLoS ONE 7, e41260 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  89. 89

    Danaher, R. J. et al. Genetic basis of Neisseria gonorrhoeae lipooligosaccharide antigenic variation. J. Bacteriol. 177, 7275–7279 (1995).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  90. 90

    Gantner, F. et al. CD40-dependent and -independent activation of human tonsil B cells by CpG oligodeoxynucleotides. Eur. J. Immunol. 33, 1576–1585 (2003).

    CAS  Article  PubMed  Google Scholar 

  91. 91

    Gringhuis, S. I. et al. C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity 26, 605–616 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Ram, S. et al. Binding of complement factor H to loop 5 of porin protein 1A: a molecular mechanism of serum resistance of nonsialylated Neisseria gonorrhoeae. J. Exp. Med. 188, 671–680 (1998).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  93. 93

    Shafer, W. M. et al. Phase variable changes in genes lgtA and lgtC within the lgtABCDE operon of Neisseria gonorrhoeae can modulate gonococcal susceptibility to normal human serum. J. Endotoxin Res. 8, 47–58 (2002).

    CAS  Article  PubMed  Google Scholar 

  94. 94

    van Vliet, S. J. et al. Variation of Neisseria gonorrhoeae lipooligosaccharide directs dendritic cell-induced T helper responses. PLoS Pathog. 5, e1000625 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. 95

    Liu, Y., Liu, W. & Russell, M. W. Suppression of host adaptive immune responses by Neisseria gonorrhoeae: role of interleukin 10 and type 1 regulatory T cells. Mucosal Immunol. 7, 165–176 (2014).

    CAS  Article  PubMed  Google Scholar 

  96. 96

    Manhart, L. E., Broad, J. M. & Golden, M. R. Mycoplasma genitalium: should we treat and how? Clin. Infect. Dis. 53 (Suppl. 3), S129–S142 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  97. 97

    Deguchi, T. & Maeda, S. Mycoplasma genitalium: another important pathogen of nongonococcal urethritis. J. Urol. 167, 1210–1217 (2002).

    Article  PubMed  Google Scholar 

  98. 98

    Maeda, S. et al. Detection of Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma parvum (biovar 1) and Ureaplasma urealyticum (biovar 2) in patients with non-gonococcal urethritis using polymerase chain reaction-microtiter plate hybridization. Int. J. Urol. 11, 750–754 (2004).

    Article  PubMed  Google Scholar 

  99. 99

    Soni, S. et al. The prevalence of urethral and rectal Mycoplasma genitalium and its associations in men who have sex with men attending a genitourinary medicine clinic. Sex. Transm. Infect. 86, 21–24 (2010).

    CAS  Article  PubMed  Google Scholar 

  100. 100

    Andrade-Rocha, F. T. Ureaplasma urealyticum and Mycoplasma hominis in men attending for routine semen analysis. Prevalence, incidence by age and clinical settings, influence on sperm characteristics, relationship with the leukocyte count and clinical value. Urol. Int. 71, 377–381 (2003).

    Article  PubMed  Google Scholar 

  101. 101

    Wang, Y., Sun, G., Pan, J. G. & Li, T. Correlation of Ureaplasma urealyticum and Chlamydia trachomatis infections with male sterility: a meta-analysis of randomized control trials [Chinese]. Zhonghua Nan Ke Xue 12, 615–618 (2006).

    PubMed  Google Scholar 

  102. 102

    Al-Sweih, N. A., Al-Fadli, A. H., Omu, A. E. & Rotimi, V. O. Prevalence of Chlamydia trachomatis, Mycoplasma hominis, Mycoplasma genitalium, and Ureaplasma urealyticum infections and seminal quality in infertile and fertile men in Kuwait. J. Androl. 33, 1323–1329 (2012).

    CAS  Article  PubMed  Google Scholar 

  103. 103

    Wikstrom, A. & Jensen, J. S. Mycoplasma genitalium: a common cause of persistent urethritis among men treated with doxycycline. Sex. Transm. Infect. 82, 276–279 (2006).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  104. 104

    Uuskula, A. & Kohl, P. K. Genital mycoplasmas, including Mycoplasma genitalium, as sexually transmitted agents. Int. J. STD AIDS 13, 79–85 (2002).

    Article  PubMed  Google Scholar 

  105. 105

    Jensen, J. S. Mycoplasma genitalium: the aetiological agent of urethritis and other sexually transmitted diseases. J. Eur. Acad. Dermatol. Venereol. 18, 1–11 (2004).

    Article  PubMed  Google Scholar 

  106. 106

    Krieger, J. N. & Riley, D. E. Prostatitis: what is the role of infection. Int. J. Antimicrob. Agents 19, 475–479 (2002).

    CAS  Article  PubMed  Google Scholar 

  107. 107

    Svenstrup, H. F., Fedder, J., Abraham-Peskir, J., Birkelund, S. & Christiansen, G. Mycoplasma genitalium attaches to human spermatozoa. Hum. Reprod. 18, 2103–2109 (2003).

    Article  PubMed  Google Scholar 

  108. 108

    Volgmann, T., Ohlinger, R. & Panzig, B. Ureaplasma urealyticum-harmless commensal or underestimated enemy of human reproduction? A review. Arch. Gynecol. Obstet. 273, 133–139 (2005).

    Article  PubMed  Google Scholar 

  109. 109

    Zeighami, H., Peerayeh, S. N., Yazdi, R. S. & Sorouri, R. Prevalence of Ureaplasma urealyticum and Ureaplasma parvum in semen of infertile and healthy men. Int. J. STD AIDS 20, 387–390 (2009).

    CAS  Article  PubMed  Google Scholar 

  110. 110

    Zinzendorf, N. Y. et al. Ureaplasma urealyticum or Mycoplasma hominis infections and semen quality of infertile men in Abidjan. J. Reprod. Contraception 19, 65–72 (2008).

    Article  Google Scholar 

  111. 111

    Povlsen, K., Jensen, J. S. & Lind, I. Detection of Ureaplasma urealyticum by PCR and biovar determination by liquid hybridization. J. Clin. Microbiol. 36, 3211–3216 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  112. 112

    Badalyan, R. R., Fanarjyan, S. V. & Aghajanyan, I. G. Chlamydial and ureaplasmal infections in patients with nonbacterial chronic prostatitis. Andrologia 35, 263–265 (2003).

    CAS  Article  PubMed  Google Scholar 

  113. 113

    Salari, M. H. & Karimi, A. Prevalence of Ureaplasma urealyticum and Mycoplasma genitalium in men with non-gonococcal urethritis. East Mediterr. Health J. 9, 291–295 (2003).

    CAS  PubMed  Google Scholar 

  114. 114

    Pannekoek, Y. et al. Cytokine concentrations in seminal plasma from subfertile men are not indicative of the presence of Ureaplasma urealyticum or Mycoplasma hominis in the lower genital tract. J. Med. Microbiol. 49, 697–700 (2000).

    CAS  Article  PubMed  Google Scholar 

  115. 115

    Shang, X. J. et al. Ureaplasma urealyticum infection and apoptosis of spermatogenic cells. Asian J. Androl. 1, 127–129 (1999).

    CAS  PubMed  Google Scholar 

  116. 116

    Bornman, M. S. et al. Microbial flora in semen of infertile African men at Garankuwa hospital. Andrologia 22, 118–121 (1990).

    CAS  Article  PubMed  Google Scholar 

  117. 117

    Xu, C., Sun, G. F., Zhu, Y. F. & Wang, Y. F. The correlation of Ureaplasma urealyticum infection with infertility. Andrologia 29, 219–226 (1997).

    CAS  Article  PubMed  Google Scholar 

  118. 118

    Reichart, M., Levi, H., Kahane, I. & Bartoov, B. Dual energy metabolism-dependent effect of Ureaplasma urealyticum infection on sperm activity. J. Androl. 22, 404–412 (2001).

    CAS  PubMed  Google Scholar 

  119. 119

    Reichart, M., Kahane, I. & Bartoov, B. In vivo and in vitro impairment of human and ram sperm nuclear chromatin integrity by sexually transmitted Ureaplasma urealyticum infection. Biol. Reprod. 63, 1041–1048 (2000).

    CAS  Article  PubMed  Google Scholar 

  120. 120

    Montagut, J. M., Lepretre, S., Degoy, J. & Rousseau, M. Ureaplasma in semen and IVF. Hum. Reprod. 6, 727–729 (1991).

    CAS  Article  PubMed  Google Scholar 

  121. 121

    Knox, C. L. et al. Ureaplasma parvum and Ureaplasma urealyticum are detected in semen after washing before assisted reproductive technology procedures. Fertil. Steril. 80, 921–929 (2003).

    Article  PubMed  Google Scholar 

  122. 122

    Rodriguez-Cerdeira, C. & Silami-Lopes, V. G. Congenital syphilis in the 21st century. Actas Dermosifiliogr. 103, 679–693 (2012).

    CAS  Article  PubMed  Google Scholar 

  123. 123

    Sadiq, S. T. et al. The effects of early syphilis on CD4 counts and HIV-1 RNA viral loads in blood and semen. Sex. Transm. Infect. 81, 380–385 (2005).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  124. 124

    Spielmann, N. et al. Time trends of syphilis and HSV-2 co-infection among men who have sex with men in the German HIV-1 seroconverter cohort from 1996–2007 Sex. Transm. Infect. 86, 331–336 (2010).

    Article  PubMed  Google Scholar 

  125. 125

    Cox, D. L. et al. Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect. Immun. 78, 5178–5194 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  126. 126

    Landau, E. Y. & Wainrach, B. Sperm-mediated host-derived DNA transfer as a new mechanism for immune system evasion of sexually transmitted genital tract pathogens. Med. Hypotheses 79, 408–412 (2012).

    CAS  Article  PubMed  Google Scholar 

  127. 127

    Radolf, J. D., Norgard, M. V. & Schulz, W. W. Outer membrane ultrastructure explains the limited antigenicity of virulent Treponema pallidum. Proc. Natl Acad. Sci. USA 86, 2051–2055 (1989).

    CAS  Article  PubMed  Google Scholar 

  128. 128

    Radolf, J. D., Caimano, M. J., Stevenson, B. & Hu, L. T. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. 10, 87–99 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  129. 129

    Cheng, L. & Bostwick, D. G. (eds) Essentials of anatomic pathology (Springer, 2011).

    Book  Google Scholar 

  130. 130

    Dejucq, N. & Jegou, B. Viruses in the mammalian male genital tract and their effects on the reproductive system. Microbiol. Mol. Biol. Rev. 65, 208–231 (2001).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  131. 131

    Lorusso, F. et al. Impact of chronic viral diseases on semen parameters. Andrologia 42, 121–126 (2010).

    CAS  Article  PubMed  Google Scholar 

  132. 132

    Kalichman, S. C., Di Berto, G. & Eaton, L. Human immunodeficiency virus viral load in blood plasma and semen: review and implications of empirical findings. Sex. Transm. Dis. 35, 55–60 (2008).

    Article  PubMed  Google Scholar 

  133. 133

    Englert, Y. et al. Medically assisted reproduction in the presence of chronic viral diseases. Hum. Reprod. Update 10, 149–162 (2004).

    Article  PubMed  Google Scholar 

  134. 134

    Association of Biomedical Andrologists et al. UK guidelines for the medical and laboratory screening of sperm, egg and embryo donors (2008). Hum. Fertil. (Camb.) 11, 201–210 (2008).

  135. 135

    Akande, V., Turner, C., Horner, P., Horne, A. & Pacey, A. Impact of Chlamydia trachomatis in the reproductive setting: British Fertility Society Guidelines for practice. Hum. Fertil. (Camb.) 13, 115–125 (2010).

    Article  Google Scholar 

  136. 136

    Wingfield, M. & Cottell, E. Viral screening of couples undergoing partner donation in assisted reproduction with regard to EU Directives 2004/23/EC, 2006/17/EC and 2006/86/EC: what is the evidence for repeated screening? Hum. Reprod. 25, 3058–3065 (2010).

    CAS  Article  PubMed  Google Scholar 

  137. 137

    Colon-Lopez, V., Ortiz, A. P. & Palefsky, J. Burden of human papillomavirus infection and related comorbidities in men: implications for research, disease prevention and health promotion among Hispanic men. P. R. Health Sci. J. 29, 232–240 (2010).

    PubMed  PubMed Central  Google Scholar 

  138. 138

    Faridi, R., Zahra, A., Khan, K. & Idrees, M. Oncogenic potential of Human Papillomavirus (HPV) and its relation with cervical cancer. Virol. J. 8, 269 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  139. 139

    Bouvard, V. et al. A review of human carcinogens—Part B: biological agents. Lancet Oncol. 10, 321–322 (2009).

    Article  PubMed  Google Scholar 

  140. 140

    Foresta, C. et al. Mechanism of human papillomavirus binding to human spermatozoa and fertilizing ability of infected spermatozoa. PLoS ONE 6, e15036 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  141. 141

    Dunne, E. F., Nielson, C. M., Stone, K. M., Markowitz, L. E. & Giuliano, A. R. Prevalence of HPV infection among men: A systematic review of the literature. J. Infect. Dis. 194, 1044–1057 (2006).

    Article  PubMed  Google Scholar 

  142. 142

    Goldstone, S. E. et al. Quadrivalent HPV vaccine efficacy against disease related to vaccine and non-vaccine HPV types in males. Vaccine 31, 3849–3855 (2013).

    CAS  Article  PubMed  Google Scholar 

  143. 143

    Wortley, P. M., Hammett, T. A. & Fleming, P. L. Donor insemination and human immunodeficiency virus transmission. Obstet. Gynecol. 91, 515–518 (1998).

    CAS  PubMed  Google Scholar 

  144. 144

    Berry, W. R., Gottesfeld, R. L., Alter, H. J. & Vierling, J. M. Transmission of hepatitis B virus by artificial insemination. JAMA 257, 1079–1081 (1987).

    CAS  Article  PubMed  Google Scholar 

  145. 145

    Moore, D. E. et al. Transmission of genital herpes by donor insemination. JAMA 261, 3441–3443 (1989).

    CAS  Article  PubMed  Google Scholar 

  146. 146

    Laprise, C., Trottier, H., Monnier, P., Coutlee, F. & Mayrand, M. H. Prevalence of human papillomaviruses in semen: a systematic review and meta-analysis. Hum. Reprod. 29, 640–651 (2014).

    Article  PubMed  Google Scholar 

  147. 147

    Kaspersen, M. D. et al. Identification of multiple HPV types on spermatozoa from human sperm donors. PLoS ONE 6, e18095 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  148. 148

    Comar, M. et al. Association between the JC polyomavirus infection and male infertility. PLoS ONE 7, e42880 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  149. 149

    Yang, Y., Jia, C. W., Ma, Y. M., Zhou, L. Y. & Wang, S. Y. Correlation between HPV sperm infection and male infertility. Asian J. Androl. 15, 529–532 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  150. 150

    Lai, Y. M. et al. The effect of human papillomavirus infection on sperm cell motility. Fertil. Steril. 67, 1152–1155 (1997).

    CAS  Article  PubMed  Google Scholar 

  151. 151

    Foresta, C. et al. Clinical and prognostic significance of human papillomavirus DNA in the sperm or exfoliated cells of infertile patients and subjects with risk factors. Fertil. Steril. 94, 1723–1727 (2010).

    CAS  Article  PubMed  Google Scholar 

  152. 152

    Foresta, C. et al. Human papillomavirus found in sperm head of young adult males affects the progressive motility. Fertil. Steril. 93, 802–806 (2010).

    Article  PubMed  Google Scholar 

  153. 153

    Foresta, C. et al. Human papillomavirus proteins are found in peripheral blood and semen Cd20+ and Cd56+ cells during Hpv-16 semen infection. BMC Infect. Dis. 13, 593 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  154. 154

    Kyo, S. et al. Detection of high-risk human papillomavirus in the cervix and semen of sex partners. J. Infect. Dis. 170, 682–685 (1994).

    CAS  Article  PubMed  Google Scholar 

  155. 155

    Lai, Y. M., Yang, F. P. & Pao, C. C. Human papillomavirus deoxyribonucleic acid and ribonucleic acid in seminal plasma and sperm cells. Fertil. Steril. 65, 1026–1030 (1996).

    CAS  Article  PubMed  Google Scholar 

  156. 156

    Rintala, M. A., Grenman, S. E., Pollanen, P. P., Suominen, J. J. & Syrjanen, S. M. Detection of high-risk HPV DNA in semen and its association with the quality of semen. Int. J. STD AIDS 15, 740–743 (2004).

    CAS  Article  PubMed  Google Scholar 

  157. 157

    Perez-Andino, J., Buck, C. B. & Ribbeck, K. Adsorption of human papillomavirus 16 to live human sperm. PLoS ONE 4, e5847 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  158. 158

    Rintala, M. A., Pollanen, P. P., Nikkanen, V. P., Grenman, S. E. & Syrjanen, S. M. Human papillomavirus DNA is found in the vas deferens. J. Infect. Dis. 185, 1664–1667 (2002).

    Article  PubMed  Google Scholar 

  159. 159

    Keck, C., Gerber-Schafer, C., Clad, A., Wilhelm, C. & Breckwoldt, M. Seminal tract infections: impact on male fertility and treatment options. Hum. Reprod. Update 4, 891–903 (1998).

    CAS  Article  PubMed  Google Scholar 

  160. 160

    Roperto, S. et al. PBMCs are additional sites of productive infection of bovine papillomavirus type 2. J. Gen. Virol. 92, 1787–1794 (2011).

    CAS  Article  PubMed  Google Scholar 

  161. 161

    Barzon, L., Militello, V., Pagni, S. & Palu, G. Comparison of INNO-LiPA genotyping extra and hybrid capture 2 assays for detection of carcinogenic human papillomavirus genotypes. J. Clin. Virol. 55, 256–261 (2012).

    CAS  Article  PubMed  Google Scholar 

  162. 162

    Garolla, A. et al. Human papillomavirus sperm infection and assisted reproduction: a dangerous hazard with a possible safe solution. Hum. Reprod. 27, 967–973 (2012).

    CAS  Article  PubMed  Google Scholar 

  163. 163

    Carter, J. J. et al. Comparison of human papillomavirus types 16, 18, and 6 capsid antibody responses following incident infection. J. Infect. Dis. 181, 1911–1919 (2000).

    CAS  Article  PubMed  Google Scholar 

  164. 164

    Weyn, C. et al. Evidence of human papillomavirus in the placenta. J. Infect. Dis. 203, 341–343 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  165. 165

    Dana, A. et al. Pregnancy outcomes from the pregnancy registry of a human papillomavirus type 6/11/16/18 vaccine. Obstet. Gynecol. 114, 1170–1178 (2009).

    Article  PubMed  Google Scholar 

  166. 166

    Perino, A. et al. Human papillomavirus infection in couples undergoing in vitro fertilization procedures: impact on reproductive outcomes. Fertil. Steril. 95, 1845–1848 (2011).

    Article  PubMed  Google Scholar 

  167. 167

    Sabatte, J. et al. Semen clusterin is a novel DC-SIGN ligand. J. Immunol. 187, 5299–5309 (2011).

    CAS  Article  PubMed  Google Scholar 

  168. 168

    McGowan, J. P. & Shah, S. S. Prevention of perinatal HIV transmission during pregnancy. J. Antimicrob. Chemother. 46, 657–668 (2000).

    CAS  Article  PubMed  Google Scholar 

  169. 169

    Galvin, S. R. & Cohen, M. S. The role of sexually transmitted diseases in HIV transmission. Nat. Rev. Microbiol. 2, 33–42 (2004).

    CAS  Article  PubMed  Google Scholar 

  170. 170

    Pilcher, C. D. et al. HIV in body fluids during primary HIV infection: implications for pathogenesis, treatment and public health. AIDS 15, 837–845 (2001).

    CAS  Article  PubMed  Google Scholar 

  171. 171

    Gupta, P. et al. Human immunodeficiency virus type 1 shedding pattern in semen correlates with the compartmentalization of viral Quasi species between blood and semen. J. Infect. Dis. 182, 79–87 (2000).

    CAS  Article  PubMed  Google Scholar 

  172. 172

    Shattock, R. J. & Moore, J. P. Inhibiting sexual transmission of HIV-1 infection. Nat. Rev. Microbiol. 1, 25–34 (2003).

    CAS  Article  PubMed  Google Scholar 

  173. 173

    Lederman, M. M., Offord, R. E. & Hartley, O. Microbicides and other topical strategies to prevent vaginal transmission of HIV. Nat. Rev. Immunol. 6, 371–382 (2006).

    CAS  Article  PubMed  Google Scholar 

  174. 174

    Hladik, F. & McElrath, M. J. Setting the stage: host invasion by HIV. Nat. Rev. Immunol. 8, 447–457 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  175. 175

    Ceballos, A. et al. Spermatozoa capture HIV-1 through heparan sulfate and efficiently transmit the virus to dendritic cells. J. Exp. Med. 206, 2717–2733 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  176. 176

    Anderson, J. A. et al. HIV-1 Populations in semen arise through multiple mechanisms. PLoS Pathog. 6, e1001053 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  177. 177

    Berlier, W. et al. Amount of seminal IL-1beta positively correlates to HIV-1 load in the semen of infected patients. J. Clin. Virol. 36, 204–207 (2006).

    CAS  Article  PubMed  Google Scholar 

  178. 178

    Cardona-Maya, W., Lopez-Herrera, A., Velilla-Hernandez, P., Rugeles, M. T. & Cadavid, A. P. The role of mannose receptor on HIV-1 entry into human spermatozoa. Am. J. Reprod. Immunol. 55, 241–245 (2006).

    CAS  Article  PubMed  Google Scholar 

  179. 179

    Bagasra, O., Freund, M., Weidmann, J. & Harley, G. Interaction of human immunodeficiency virus with human sperm in vitro. J. Acquir. Immune Defic. Syndr. 1, 431–435 (1988).

    CAS  PubMed  Google Scholar 

  180. 180

    Bagasra, O. et al. Detection of HIV-1 proviral DNA in sperm from HIV-1-infected men. AIDS 8, 1669–1674 (1994).

    CAS  Article  PubMed  Google Scholar 

  181. 181

    Barboza, J. M. et al. Use of atomic force microscopy to reveal sperm ultrastructure in HIV-patients on highly active antiretroviral therapy. Arch. Androl. 50, 121–129 (2004).

    CAS  Article  PubMed  Google Scholar 

  182. 182

    Nuovo, G. J. et al. HIV-1 nucleic acids localize to the spermatogonia and their progeny. A study by polymerase chain reaction in situ hybridization. Am. J. Pathol. 144, 1142–1148 (1994).

    PubMed  PubMed Central  CAS  Google Scholar 

  183. 183

    Muciaccia, B. et al. Presence and cellular distribution of HIV in the testes of seropositive subjects: an evaluation by in situ PCR hybridization. FASEB J. 12, 151–163 (1998).

    CAS  Article  PubMed  Google Scholar 

  184. 184

    Muciaccia, B. et al. Testicular germ cells of HIV-seropositive asymptomatic men are infected by the virus. J. Reprod. Immunol. 41, 81–93 (1998).

    CAS  Article  PubMed  Google Scholar 

  185. 185

    Shevchuk, M. M., Nuovo, G. J. & Khalife, G. HIV in testis: quantitative histology and HIV localization in germ cells. J. Reprod. Immunol. 41, 69–79 (1998).

    CAS  Article  PubMed  Google Scholar 

  186. 186

    Shehu-Xhilaga, M. et al. The testis and epididymis are productively infected by SIV and SHIV in juvenile macaques during the post-acute stage of infection. Retrovirology 4, 7 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  187. 187

    van Leeuwen, E. et al. Effects of antiretroviral therapy on semen quality. AIDS 22, 637–642 (2008).

    Article  PubMed  Google Scholar 

  188. 188

    Dondero, F. et al. Semen analysis in HIV seropositive men and in subjects at high risk for HIV infection. Hum. Reprod. 11, 765–768 (1996).

    CAS  Article  PubMed  Google Scholar 

  189. 189

    Nicopoullos, J. D., Almeida, P. A., Ramsay, J. W. & Gilling-Smith, C. The effect of human immunodeficiency virus on sperm parameters and the outcome of intrauterine insemination following sperm washing. Hum. Reprod. 19, 2289–2297 (2004).

    Article  PubMed  Google Scholar 

  190. 190

    Pavili, L. et al. Decrease of mitochondrial DNA level in sperm from patients infected with human immunodeficiency virus-1 linked to nucleoside analogue reverse transcriptase inhibitors. Fertil. Steril. 94, 2151–2156 (2010).

    CAS  Article  PubMed  Google Scholar 

  191. 191

    Kehl, S. et al. HIV-infection and modern antiretroviral therapy impair sperm quality. Arch. Gynecol. Obstet. 284, 229–233 (2011).

    Article  PubMed  Google Scholar 

  192. 192

    Dulioust, E. et al. Semen alterations in HIV-1 infected men. Hum. Reprod. 17, 2112–2118 (2002).

    CAS  Article  PubMed  Google Scholar 

  193. 193

    Mencaglia, L. et al. ICSI for treatment of human immunodeficiency virus and hepatitis C virus-serodiscordant couples with infected male partner. Hum. Reprod. 20, 2242–2246 (2005).

    Article  PubMed  Google Scholar 

  194. 194

    Bujan, L. et al. Decreased semen volume and spermatozoa motility in HIV-1-infected patients under antiretroviral treatment. J. Androl. 28, 444–452 (2007).

    Article  PubMed  Google Scholar 

  195. 195

    Melo, M. A. et al. Human immunodeficiency type-1 virus (HIV-1) infection in serodiscordant couples (SDCs) does not have an impact on embryo quality or intracytoplasmic sperm injection (ICSI) outcome. Fertil. Steril. 89, 141–150 (2008).

    CAS  Article  PubMed  Google Scholar 

  196. 196

    Vandermaelen, A. & Englert, Y. Human immunodeficiency virus serodiscordant couples on highly active antiretroviral therapies with undetectable viral load: conception by unprotected sexual intercourse or by assisted reproduction techniques? Hum. Reprod. 25, 374–379 (2010).

    Article  PubMed  Google Scholar 

  197. 197

    Conrady, C. D., Jones, H., Zheng, M. & Carr, D. J. A functional type I interferon pathway drives resistance to cornea herpes simplex virus type 1 infection by recruitment of leukocytes. J. Biomed. Res. 25, 111–119 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  198. 198

    Wald, A. et al. Reactivation of genital herpes simplex virus type 2 infection in asymptomatic seropositive persons. N. Engl. J. Med. 342, 844–850 (2000).

    CAS  Article  PubMed  Google Scholar 

  199. 199

    Zuckerman, R. A. et al. HSV suppression reduces seminal HIV-1 levels in HIV-1/HSV-2 co-infected men who have sex with men. AIDS 23, 479–483 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  200. 200

    Neofytou, E., Sourvinos, G., Asmarianaki, M., Spandidos, D. A. & Makrigiannakis, A. Prevalence of human herpes virus types 1–7 in the semen of men attending an infertility clinic and correlation with semen parameters. Fertil. Steril. 91, 2487–2494 (2009).

    CAS  Article  PubMed  Google Scholar 

  201. 201

    Bocharova, E. N. et al. Detection of herpes simplex virus genomic DNA in spermatozoa of patients with fertility disorders by in situ hybridization. Dokl. Biol. Sci. 412, 82–86 (2007).

    CAS  Article  PubMed  Google Scholar 

  202. 202

    DeTure, F. A., Drylie, D. M., Kaufman, H. E. & Centifanto, Y. N. Herpesvirus type 2: isolation from seminal vesicle and testes. Urology 7, 541–544 (1976).

    CAS  Article  PubMed  Google Scholar 

  203. 203

    Huttner, K. M., Pudney, J., Milstone, D. S., Ladd, D. & Seidman, J. G. Flagellar and acrosomal abnormalities associated with testicular HSV-tk expression in the mouse. Biol. Reprod. 49, 251–261 (1993).

    CAS  Article  PubMed  Google Scholar 

  204. 204

    Cai, L. Y. et al. HSV type 1 thymidine kinase protein accumulation in round spermatids induces male infertility by spermatogenesis disruption and apoptotic loss of germ cells. Reprod. Toxicol. 27, 14–21 (2009).

    CAS  Article  PubMed  Google Scholar 

  205. 205

    el Borai, N. et al. Detection of herpes simplex DNA in semen and menstrual blood of individuals attending an infertility clinic. J. Obstet. Gynaecol. Res. 23, 17–24 (1997).

    CAS  Article  PubMed  Google Scholar 

  206. 206

    Erles, K. et al. DNA of adeno-associated virus (AAV) in testicular tissue and in abnormal semen samples. Hum. Reprod. 16, 2333–2337 (2001).

    CAS  Article  PubMed  Google Scholar 

  207. 207

    Abdulmedzhidova, A. G. et al. Asymptomatic genital herpes infection and infertility in males [Russian]. Urologiia 56–59 (2007).

  208. 208

    Wu, K. H. et al. Infection of cytomegalovirus and herpes simplex virus and morphology of the infected spermatogenic cells in infertile men [Chinese]. Zhonghua Nan Ke Xue 13, 1075–1079 (2007).

    PubMed  Google Scholar 

  209. 209

    Klimova, R. R. et al. Herpes simplex virus and cytomegalovirus in male ejaculate: herpes simplex virus is more frequently encountered in idiopathic infertility and correlates with the reduction in sperm parameters [Russian]. Vopr. Virusol. 55, 27–31 (2010).

    CAS  PubMed  Google Scholar 

  210. 210

    Pilikian, S., Guerin, J. F., Czyba, J. C. & Pinatel, M. C. Study of different components in spermatic function after failure of in vitro fertilization [French]. Contracept. Fertil. Sex. 21, 865–868 (1993).

    CAS  PubMed  Google Scholar 

  211. 211

    Aydin, S. et al. Failure of artificial insemination of husband's semen in the treatment of male infertility. Int. Urol. Nephrol. 28, 117–122 (1996).

    CAS  Article  PubMed  Google Scholar 

  212. 212

    Kaspersen, M. D. & Hollsberg, P. Seminal shedding of human herpesviruses. Virol. J. 10, 226 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  213. 213

    Zea-Mazo, J. W., Negrette-Mejia, Y. A. & Cardona-Maya, W. Virus of sexual transmission: semen and virus relationship [Spanish]. Actas Urol. Esp. 34, 845–853 (2010).

    CAS  Article  PubMed  Google Scholar 

  214. 214

    Qian, W. P. et al. Rapid quantification of semen hepatitis B virus DNA by real-time polymerase chain reaction. World J. Gastroenterol. 11, 5385–5389 (2005).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  215. 215

    Hadchouel, M. et al. Presence of HBV DNA in spermatozoa: a possible vertical transmission of HBV via the germ line. J. Med. Virol. 16, 61–66 (1985).

    CAS  Article  PubMed  Google Scholar 

  216. 216

    Huang, J. M. et al. Studies on the integration of hepatitis B virus DNA sequence in human sperm chromosomes. Asian J. Androl. 4, 209–212 (2002).

    CAS  PubMed  Google Scholar 

  217. 217

    Vicari, E. et al. Sperm output in patients with primary infertility and hepatitis B or C virus; negative influence of HBV infection during concomitant varicocele. Minerva Med. 97, 65–77 (2006).

    CAS  PubMed  Google Scholar 

  218. 218

    Kang, X. et al. Effects of hepatitis B virus S. protein exposure on sperm membrane integrity and functions. PLoS ONE 7, e33471 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  219. 219

    Xu, X. The possible role of sperm in family HBV infection [Chinese]. Zhonghua Liu Xing Bing Xue Za Zhi 13, 337–339 (1992).

    CAS  PubMed  Google Scholar 

  220. 220

    Otedo, A. E., Mc'Ligeyo, S. O., Okoth, F. A. & Kayima, J. K. Seroprevalence of hepatitis B and C in maintenance dialysis in a public hospital in a developing country. S. Afr. Med. J. 93, 380–384 (2003).

    CAS  PubMed  Google Scholar 

  221. 221

    Zhao, H., Jiang, P. & Yin, H. Study on the contents of HBV DNA in sera of patients with hepatic diseases by QPCR technique [Chinese]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 12, 367–369 (1998).

    CAS  PubMed  Google Scholar 

  222. 222

    Harvey, H. A. et al. Gonococcal lipooligosaccharide is a ligand for the asialoglycoprotein receptor on human sperm. Mol. Microbiol. 36, 1059–1070 (2000).

    CAS  Article  PubMed  Google Scholar 

  223. 223

    Zhou, X. P. et al. Comparison of semen quality and outcome of assisted reproductive techniques in Chinese men with and without hepatitis B. Asian J. Androl. 13, 465–469 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  224. 224

    Ali, B. A., Huang, T. H. & Xie, Q. D. Detection and expression of hepatitis B virus X gene in one and two-cell embryos from golden hamster oocytes in vitro fertilized with human spermatozoa carrying HBV DNA. Mol. Reprod. Dev. 70, 30–36 (2005).

    CAS  Article  PubMed  Google Scholar 

  225. 225

    Xiong, X. Y., Liu, X. & Chen, Y. D. Expression and immunoreactivity of HCV/HBV epitopes. World J. Gastroenterol. 11, 6440–6444 (2005).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  226. 226

    Ali, B. A., Huang, T. H., Salem, H. H. & Xie, Q. D. Expression of hepatitis B virus genes in early embryonic cells originated from hamster ova and human spermatozoa transfected with the complete viral genome. Asian J. Androl. 8, 273–279 (2006).

    CAS  Article  PubMed  Google Scholar 

  227. 227

    Lee, V. C., Ng, E. H., Yeung, W. S. & Ho, P. C. Impact of positive hepatitis B surface antigen on the outcome of IVF treatment. Reprod. Biomed. Online 21, 712–717 (2010).

    CAS  Article  PubMed  Google Scholar 

  228. 228

    Aitken, R. J., Harkiss, D. & Buckingham, D. W. Analysis of lipid peroxidation mechanisms in human spermatozoa. Mol. Reprod. Dev. 35, 302–315 (1993).

    CAS  Article  PubMed  Google Scholar 

  229. 229

    Wang, X. et al. Alterations in mitochondria membrane potential and oxidative stress in infertile men: a prospective observational study. Fertil. Steril. 80 (Suppl. 2), 844–850 (2003).

    Article  PubMed  Google Scholar 

  230. 230

    Wu, J. N. et al. Caspase inhibition augmented oridonin-induced cell death in murine fibrosarcoma l929 by enhancing reactive oxygen species generation. J. Pharmacol. Sci. 108, 32–39 (2008).

    CAS  Article  PubMed  Google Scholar 

  231. 231

    Bourlet, T. et al. Detection and characterization of hepatitis C virus RNA in seminal plasma and spermatozoon fractions of semen from patients attempting medically assisted conception. J. Clin. Microbiol. 40, 3252–3255 (2002).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  232. 232

    Cassuto, N. G. et al. A modified RT-PCR technique to screen for viral RNA in the semen of hepatitis C virus-positive men. Hum. Reprod. 17, 3153–3156 (2002).

    CAS  Article  PubMed  Google Scholar 

  233. 233

    Nguyen, O., Sheppeard, V., Douglas, M. W., Tu, E. & Rawlinson, W. Acute hepatitis C infection with evidence of heterosexual transmission. J. Clin. Virol. 49, 65–68 (2010).

    Article  PubMed  Google Scholar 

  234. 234

    Terrault, N. A. Sexual activity as a risk factor for hepatitis C. Hepatology 36, S99–S105 (2002).

    PubMed  Google Scholar 

  235. 235

    Durazzo, M. et al. Alterations of seminal and hormonal parameters: An extrahepatic manifestation of HCV infection? World J. Gastroenterol. 12, 3073–3076 (2006).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  236. 236

    Alter, M. J. et al. Importance of heterosexual activity in the transmission of hepatitis B and non-A, non-B hepatitis. JAMA 262, 1201–1205 (1989).

    CAS  Article  PubMed  Google Scholar 

  237. 237

    Piazza, M. et al. Sexual transmission of the hepatitis C virus and efficacy of prophylaxis with intramuscular immune serum globulin. A randomized controlled trial. Arch. Intern. Med. 157, 1537–1544 (1997).

    CAS  Article  PubMed  Google Scholar 

  238. 238

    Vandelli, C. et al. Lack of evidence of sexual transmission of hepatitis C among monogamous couples: results of a 10-year prospective follow-up study. Am. J. Gastroenterol. 99, 855–859 (2004).

    Article  PubMed  Google Scholar 

  239. 239

    Tahan, V. et al. Sexual transmission of HCV between spouses. Am. J. Gastroenterol. 100, 821–824 (2005).

    Article  PubMed  Google Scholar 

  240. 240

    Sexually transmitted diseases, treatment guidelines, 2010, Hepatitis C. Centers for Disease Control and Prevention [online], (2010).

  241. 241

    Levy, R. et al. Transmission risk of hepatitis C virus in assisted reproductive techniques. Hum. Reprod. 15, 810–816 (2000).

    CAS  Article  PubMed  Google Scholar 

  242. 242

    Levy, R. et al. Pregnancy after safe IVF with hepatitis C virus RNA-positive sperm. Hum. Reprod. 17, 2650–2653 (2002).

    CAS  Article  PubMed  Google Scholar 

  243. 243

    Filippini, P. et al. Does HIV infection favor the sexual transmission of hepatitis C? Sex. Transm. Dis. 28, 725–729 (2001).

    CAS  Article  PubMed  Google Scholar 

  244. 244

    Briat, A. et al. Hepatitis C virus in the semen of men coinfected with HIV-1: prevalence and origin. AIDS 19, 1827–1835 (2005).

    Article  PubMed  Google Scholar 

  245. 245

    Halfon, P. et al. Medically assisted procreation and transmission of hepatitis C virus: absence of HCV RNA in purified sperm fraction in HIV co-infected patients. AIDS 20, 241–246 (2006).

    Article  PubMed  Google Scholar 

  246. 246

    Bourlet, T. et al. Prospective evaluation of the threat related to the use of seminal fractions from hepatitis C virus-infected men in assisted reproductive techniques. Hum. Reprod. 24, 530–535 (2009).

    CAS  Article  PubMed  Google Scholar 

  247. 247

    Hofny, E. R. et al. Semen and hormonal parameters in men with chronic hepatitis C infection. Fertil. Steril. 95, 2557–2559 (2011).

    CAS  Article  PubMed  Google Scholar 

  248. 248

    Savasi, V., Oneta, M., Parrilla, B. & Cetin, I. Should HCV discordant couples with a seropositive male partner be treated with assisted reproduction techniques (ART)? Eur. J. Obstet. Gynecol. Reprod. Biol. 167, 181–184 (2013).

    Article  PubMed  Google Scholar 

  249. 249

    Goldberg-Bittman, L. et al. Random aneuploidy in chronic hepatitis C patients. Cancer Genet. Cytogenet. 180, 20–23 (2008).

    CAS  Article  PubMed  Google Scholar 

  250. 250

    Devaux, A. et al. Hepatitis C virus detection in follicular fluid and culture media from HCV+ women, and viral risk during IVF procedures. Hum. Reprod. 18, 2342–2349 (2003).

    CAS  Article  PubMed  Google Scholar 

  251. 251

    Abou-Setta, A. M. Transmission risk of hepatitis C virus via semen during assisted reproduction: how real is it? Hum. Reprod. 19, 2711–2717 (2004).

    Article  PubMed  Google Scholar 

  252. 252

    Sifer, C. et al. Effects of hepatitis C virus on the apoptosis percentage of granulosa cells in vivo in women undergoing IVF: preliminary results. Hum. Reprod. 17, 1773–1776 (2002).

    CAS  Article  PubMed  Google Scholar 

  253. 253

    Papaxanthos-Roche, A. et al. PCR-detected hepatitis C virus RNA associated with human zona-intact oocytes collected from infected women for ART. Hum. Reprod. 19, 1170–1175 (2004).

    CAS  Article  PubMed  Google Scholar 

  254. 254

    Savasi, V. et al. Hepatitis C virus RNA detection in different semen fractions of HCV/HIV-1 co-infected men by nested PCR. Eur. J. Obstet. Gynecol. Reprod. Biol. 151, 52–55 (2010).

    CAS  Article  PubMed  Google Scholar 

  255. 255

    Foster, G. R. Past, present, and future hepatitis C treatments. Semin. Liver Dis. 24 (Suppl. 2), 97–104 (2004).

    CAS  Article  PubMed  Google Scholar 

  256. 256

    Gimenes, F. et al. Sensitive simultaneous detection of seven sexually transmitted agents in semen by multiplex-PCR and of HPV by single PCR. PLoS ONE 9, e98862 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  257. 257

    Spector, S. A., Merrill, R., Wolf, D. & Dankner, W. M. Detection of human cytomegalovirus in plasma of AIDS patients during acute visceral disease by DNA amplification. J. Clin. Microbiol. 30, 2359–2365 (1992).

    PubMed  PubMed Central  CAS  Google Scholar 

  258. 258

    Eggert-Kruse, W., Reuland, M., Johannsen, W., Strowitzki, T. & Schlehofer, J. R. Cytomegalovirus (CMV) infection—related to male and/or female infertility factors? Fertil. Steril. 91, 67–82 (2009).

    Article  PubMed  Google Scholar 

  259. 259

    Roback, J. D. et al. Multicenter evaluation of PCR methods for detecting CMV DNA in blood donors. Transfusion 41, 1249–1257 (2001).

    CAS  Article  PubMed  Google Scholar 

  260. 260

    Diafouka, F., Foulongne, V., Hauhouot-Attoungbre, M. L., Monnet, D. & Segondy, M. Cytomegalovirus DNA in semen of men seeking fertility evaluation in Abidjan, Cote d'Ivoire. Eur. J. Clin. Microbiol. Infect. Dis. 26, 295–296 (2007).

    CAS  Article  PubMed  Google Scholar 

  261. 261

    McGowan, M. P., Hayes, K., Kovacs, G. T. & Leydon, J. A. Prevalence of cytomegalovirus and herpes simplex virus in human semen. Int. J. Androl. 6, 331–336 (1983).

    CAS  Article  PubMed  Google Scholar 

  262. 262

    Levy, R. et al. Detection of cytomegalovirus in semen from a population of men seeking infertility evaluation. Fertil. Steril. 68, 820–825 (1997).

    CAS  Article  PubMed  Google Scholar 

  263. 263

    Pallier, C. et al. Herpesvirus, cytomegalovirus, human sperm and assisted fertilization. Hum. Reprod. 17, 1281–1287 (2002).

    Article  PubMed  Google Scholar 

  264. 264

    Dalton, A. D. & Harcourt-Webster, J. N. The histopathology of the testis and epididymis in AIDS--a post-mortem study. J. Pathol. 163, 47–52 (1991).

    CAS  Article  PubMed  Google Scholar 

  265. 265

    Kimura, M., Maekura, S., Satou, T. & Hashimoto, S. Cytomegaloviral inclusions detected in the seminal vesicle, ductus deferens and lungs in an autopsy case of lung cancer [Japanese]. Rinsho Byori 41, 1059–1062 (1993).

    CAS  PubMed  Google Scholar 

  266. 266

    Mastroianni, A., Coronado, O., Manfredi, R., Chiodo, F. & Scarani, P. Acute cytomegalovirus prostatitis in AIDS. Genitourin. Med. 72, 447–448 (1996).

    PubMed  PubMed Central  CAS  Google Scholar 

  267. 267

    Lang, D. J., Kummer, J. F. & Hartley, D. P. Cytomegalovirus in semen. Persistence and demonstration in extracellular fluids. N. Engl. J. Med. 291, 121–123 (1974).

    CAS  Article  PubMed  Google Scholar 

  268. 268

    Naumenko, V. A. et al. Detection of human cytomegalovirus in motile spermatozoa and spermatogenic cells in testis organotypic culture. Herpesviridae 2, 7 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  269. 269

    Naumenko, V. et al. Detection and quantification of human herpes viruses types 4–6 in sperm samples of patients with fertility disorders and chronic inflammatory urogenital tract diseases. Andrology 2, 687–694 (2014).

    CAS  Article  PubMed  Google Scholar 

  270. 270

    McClelland, R. S. Trichomonas vaginalis infection: can we afford to do nothing? J. Infect. Dis. 197, 487–489 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  271. 271

    Harp, D. F. & Chowdhury, I. Trichomoniasis: evaluation to execution. Eur. J. Obstet. Gynecol. Reprod. Biol. 157, 3–9 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  272. 272

    Sood, S. & Kapil, A. An update on Trichomonas vaginalis. Indian J. Sex. Dis. 29, 7–14 (2008).

    Article  Google Scholar 

  273. 273

    Mitteregger, D. et al. High detection rate of Trichomonas vaginalis in benign hyperplastic prostatic tissue. Med. Microbiol. Immunol. 201, 113–116 (2012).

    Article  PubMed  Google Scholar 

  274. 274

    Krieger, J. N. Trichomoniasis in men: old issues and new data. Sex. Transm. Dis. 22, 83–96 (1995).

    CAS  Article  PubMed  Google Scholar 

  275. 275

    Watson-Jones, D. et al. High prevalence of trichomoniasis in rural men in Mwanza, Tanzania: results from a population based study. Sex. Transm. Infect. 76, 355–362 (2000).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  276. 276

    Carlton, J. M. et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315, 207–212 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  277. 277

    Soper, D. Trichomoniasis: under control or undercontrolled? Am. J. Obstet. Gynecol. 190, 281–290 (2004).

    Article  PubMed  Google Scholar 

  278. 278

    Sommer, U. et al. Identification of Trichomonas vaginalis cysteine proteases that induce apoptosis in human vaginal epithelial cells. J. Biol. Chem. 280, 23853–23860 (2005).

    CAS  Article  PubMed  Google Scholar 

  279. 279

    Sutcliffe, S., Neace, C., Magnuson, N. S., Reeves, R. & Alderete, J. F. Trichomonosis, a common curable STI, and prostate carcinogenesis-a proposed molecular mechanism. PLoS Pathog. 8, e1002801 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  280. 280

    Gomez, C., Esther Ramirez, M., Calixto-Galvez, M., Medel, O. & Rodriguez, M. A. Regulation of gene expression in protozoa parasites. J. Biomed. Biotechnol. 2010, 726045 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  281. 281

    Westrop, G. D., Goodall, G., Mottram, J. C. & Coombs, G. H. Cysteine biosynthesis in Trichomonas vaginalis involves cysteine synthase utilizing O-phosphoserine. J. Biol. Chem. 281, 25062–25075 (2006).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  282. 282

    Yadav, M., Gupta, I. & Malla, N. Kinetics of immunoglobulin G, M, A and IgG subclass responses in experimental intravaginal trichomoniasis: prominence of IgG1 response. Parasite Immunol. 27, 461–467 (2005).

    CAS  Article  PubMed  Google Scholar 

  283. 283

    Crouch, M. L., Benchimol, M. & Alderete, J. F. Binding of fibronectin by Trichomonas vaginalis is influenced by iron and calcium. Microb. Pathog. 31, 131–144 (2001).

    CAS  Article  PubMed  Google Scholar 

  284. 284

    Alderete, J. F., Benchimol, M., Lehker, M. W. & Crouch, M. L. The complex fibronectin-Trichomonas vaginalis interactions and Trichomonosis. Parasitol. Int. 51, 285–292 (2002).

    CAS  Article  PubMed  Google Scholar 

  285. 285

    Lubick, K. J. & Burgess, D. E. Purification and analysis of a phospholipase A2-like lytic factor of Trichomonas vaginalis. Infect. Immun. 72, 1284–1290 (2004).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  286. 286

    Singh, B. N. et al. Structural details and composition of Trichomonas vaginalis lipophosphoglycan in relevance to the epithelial immune function. Glycoconj. J. 26, 3–17 (2009).

    CAS  Article  PubMed  Google Scholar 

  287. 287

    Hobbs, M. M., Sena, A. C., Swygard, H. & Schwebke, J. R. in Sexually transmitted diseases 4th edn Ch. 43 (eds Holmes, K. K. et al.) 771–794 (McGraw-Hill, 2008).

    Google Scholar 

  288. 288

    Ryu, J. S. et al. Production of interleukin-8 by human neutrophils stimulated with Trichomonas vaginalis. Infect. Immun. 72, 1326–1332 (2004).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  289. 289

    Kucknoor, A. S., Mundodi, V. & Alderete, J. F. The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65. Cell. Microbiol. 9, 2586–2597 (2007).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  290. 290

    Tan, C. H., Loh, P. T., Yang, W. S. & Chan, C. M. Mycophenolate mofetil in the treatment of IgA nephropathy: a systematic review. Singapore Med. J. 49, 780–785 (2008).

    CAS  PubMed  Google Scholar 

  291. 291

    Fichorova, R. N. Impact of T. vaginalis infection on innate immune responses and reproductive outcome. J. Reprod. Immunol. 83, 185–189 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  292. 292

    Han, I. H., Park, S. J., Ahn, M. H. & Ryu, J. S. Involvement of mast cells in inflammation induced by Trichomonas vaginalis via crosstalk with vaginal epithelial cells. Parasite Immunol. 34, 8–14 (2012).

    CAS  Article  PubMed  Google Scholar 

  293. 293

    Cowan, M. J., Coll, T. & Shelhamer, J. H. Polyamine-mediated reduction in human airway epithelial migration in response to wounding is PGE2 dependent through decreases in COX-2 and cPLA2 protein levels. J. Appl. Physiol. (1985) 101, 1127–1135 (2006).

    CAS  Article  Google Scholar 

  294. 294

    Garcia, A. F., Benchimol, M. & Alderete, J. F. Trichomonas vaginalis polyamine metabolism is linked to host cell adherence and cytotoxicity. Infect. Immun. 73, 2602–2610 (2005).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  295. 295

    Gardner, W. A. Jr, Culberson, D. E. & Bennett, B. D. Trichomonas vaginalis in the prostate gland. Arch. Pathol. Lab. Med. 110, 430–432 (1986).

    PubMed  Google Scholar 

  296. 296

    Fitzpatrick, J. M. The natural history of benign prostatic hyperplasia. BJU Int. 97 (Suppl. 2), 3–6 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Coordenação de Aperfeiçoamento de Pessoal de Nível superior (CAPES) and Instituto Nacional de Ciência e Tecnologia para Inovação terapêutica (INCT-if), Brazilian Government.

Author information

Affiliations

Authors

Contributions

All authors researched data for the article. F.G., R.P.S., J.C.B., J.J.V.T., M.G.B. and M.E.L.C. contributed substantially to discussion of content. F.G., R.P.S. and M.E.L.C. wrote the article, and J.C.B., J.J.V.T., S.S.M.-E. and M.G.B. contributed to review and editing of the manuscript before submission.

Corresponding author

Correspondence to Marcia E. L. Consolaro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gimenes, F., Souza, R., Bento, J. et al. Male infertility: a public health issue caused by sexually transmitted pathogens. Nat Rev Urol 11, 672–687 (2014). https://doi.org/10.1038/nrurol.2014.285

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing