Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ablative therapies for small renal tumours

Abstract

Improvements in imaging technology have resulted in an increase in detection of small renal masses (SRMs). Minimally invasive ablation modalities, including cryoablation, radiofrequencey ablation, microwave ablation and irreversible electroporation, are currently being used to treat SRMs in select groups of patients. Cryoablation and radiofrequency ablation have been extensively studied. Presently, cryoablation is gaining popularity because the resulting ice ball can be visualized easily using ultrasonography. Tumour size and location are strong predictors of outcome of radiofrequency ablation. One of the main benefits of microwave ablation is that microwaves can propagate through all types of tissue, including desiccated and charred tissue, as well as water vapour, which might be formed during the ablation. Irreversible electroporation has been shown in animal studies to affect only the cell membrane of undesirable target tissues and to spare adjacent structures; however, clinical studies that depict the efficacy and safety of this treatment modality in humans are still sparse. As more experience is gained in the future, ablation modalities might be utilized in all patients with tumours <4 cm in diameter, rather than just as an alternative treatment for high-risk surgical patients.

Key Points

  • Cryoablation has been extensively studied and is gaining popularity because the resulting ice ball can be easily visualized in real time using ultrasonography

  • Radiofrequency ablation relies almost solely on heat conduction to treat solid tumours and is, therefore, most susceptible to heat sinks owing to blood flow

  • Microwaves propagate through all types of tissue, including desiccated and charred, as well as water vapour, which might be formed during the ablation

  • Irreversible electroporation has been shown in animal studies to affect only the cell membrane of undesirable target tissues and to spare adjacent structures

  • In the future, ablation modalities might be utilized in all patients and not just as an alternative treatment for older patients and those considered unfit for surgery

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Chow, W. H., Devesa, S. S., Warren, J. L. & Fraumeni, J. F. Jr. Rising incidence of renal cell cancer in the United States. JAMA 281, 1628–1631 (1999).

    CAS  PubMed  Article  Google Scholar 

  2. Campbell, S. C. et al. Guideline for management of the clinical T1 renal mass. J. Urol. 182, 1271–1279 (2009).

    Article  PubMed  Google Scholar 

  3. Ljungberg, B. et al. EAU Guidelines on Renal Cell Carcinoma: The 2010 Update. Eur. Urol. 58, 398–406 (2010).

    Article  PubMed  Google Scholar 

  4. Fergany, A. Current status and advances in nephron-sparing surgery. Clin. Genitourin. Cancer 5, 26–33 (2006).

    Article  PubMed  Google Scholar 

  5. Uzzo, R. G. & Novick, A. C. Nephron sparing surgery for renal tumors: indications, techniques and outcomes. J. Urol. 166, 6–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Kang, D. C. et al. A systematic review of the quality of evidence of ablative therapy for small renal masses. J. Urol. 187, 44–47 (2012).

    Article  PubMed  Google Scholar 

  7. Rioja, J., Tzortzis, V., Mamoulakis, C. & Laguna, M. P. Cryotherapy for renal tumors: current status and contemporary developments [Spanish]. Actas Urol. Esp. 34, 309–317 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Rewcastle, J. C., Sandison, G. A., Saliken, J. C., Donnelly, B. J. & McKinnon, J. G. Considerations during clinical operation of two commercially available cryomachines. J. Surg. Oncol. 71, 106–111 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Gill, I. S. Renal cryotherapy: pro. Urology 65, 415–418 (2005).

    Article  PubMed  Google Scholar 

  10. Chosy, S. G., Nakada, S. Y., Lee, F. T. Jr & Warner, T. F. Monitoring renal cryosurgery: predictors of tissue necrosis in swine. J. Urol. 159, 1370–1374 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Campbell, S. C. et al. Renal cryosurgery: experimental evaluation of treatment parameters. Urology 52, 29–33 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Graversen, J. A., Mues, A. C. & Landman, J. Laparoscopic ablation of renal neoplasms. J. Endourol. 25, 187–194 (2011).

    Article  PubMed  Google Scholar 

  13. Schmit, G. D. et al. Percutaneous cryoablation of anterior renal masses: technique, efficacy, and safety. AJR Am. J. Roentgenol. 195, 1418–1422 (2010).

    Article  PubMed  Google Scholar 

  14. Farrell, M. A. et al. Paranephric water instillation: a technique to prevent bowel injury during percutaneous renal radiofrequency ablation. AJR Am. J. Roentgenol. 181, 1315–1317 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Cantwell, C. P. et al. Protecting the ureter during radiofrequency ablation of renal cell cancer: a pilot study of retrograde pyeloperfusion with cooled dextrose 5% in water. J. Vasc. Interv. Radiol. 19, 1034–1040 (2008).

    Article  PubMed  Google Scholar 

  16. Silverman, S. G., Tuncali, K. & Morrison, P. R. MR Imaging-guided percutaneous tumor ablation. Acad. Radiol. 12, 1100–1109 (2005).

    Article  PubMed  Google Scholar 

  17. Graversen, J. A., Mues, A. C. & Landman, J. Laparoscopic ablation of renal neoplasms. J. Endourol. 25, 187–194 (2011).

    Article  PubMed  Google Scholar 

  18. Kaouk, J. H., Aron, M., Rewcastle, J. C. & Gill, I. S. Cryotherapy: clinical end points and their experimental foundations. Urology 68, 38–44 (2006).

    Article  PubMed  Google Scholar 

  19. Tanagho, Y. S. et al. Laparoscopic cryoablation of renal masses: single-center long-term experience. Urology 80, 307–315 (2012).

    Article  PubMed  Google Scholar 

  20. Guazzoni, G. et al. Oncologic results of laparoscopic renal cryoablation for clinical T1a tumors: 8 years of experience in a single institution. Urology 76, 624–630 (2010).

    Article  PubMed  Google Scholar 

  21. Faddegon, S. & Cadeddu, J. A. Does renal mass ablation provide adequate long-term oncologic control? Urol. Clin. North Am. 39, 181–190 (2012).

    Article  PubMed  Google Scholar 

  22. Rodriguez, R., Cizman, Z., Hong, K., Koliatsos, A. & Georgiades, C. Prospective analysis of the safety and efficacy of percutaneous cryoablation for pT1NxMx biopsy-proven renal cell carcinoma. Cardiovasc. Intervent. Radiol. 34, 573–578 (2011).

    Article  PubMed  Google Scholar 

  23. Spreafico, C. et al. CT-guided percutaneous cryoablation of renal masses in selected patients. Radiol. Med. 117, 593–605 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Sisul, D. M. et al. RENAL nephrometry score is associated with complications after renal cryoablation: a multicenter analysis. Urology doi:10.1016/j.urology.2012.11.037.

  25. Salas, N., Castle, S. M. & Leveillee, R. J. Radiofrequency ablation for treatment of renal tumors: technological principles and outcomes. Expert Rev. Med. Devices 8, 695–707 (2011).

    Article  PubMed  Google Scholar 

  26. Bhowmick, P. et al. In vitro assessment of the efficacy of thermal therapy in human benign prostatic hyperplasia. Int. J. Hyperthermia 20, 421–439 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Bhowmick, S., Coad, J. E., Swanlund, D. J. & Bischof, J. C. In vitro thermal therapy of AT-1 Dunning prostate tumours. Int. J. Hyperthermia 20, 73–92 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. He, X. & Bischof, J. C. The kinetics of thermal injury in human renal carcinoma cells. Ann. Biomed. Eng. 33, 502–510 (2005).

    Article  PubMed  Google Scholar 

  29. Boss, A., Clasen, S., Kuczyk, M., Schick, F. & Pereira, P. L. Image-guided radiofrequency ablation of renal cell carcinoma. Eur. Radiol. 17, 725–733 (2007).

    Article  PubMed  Google Scholar 

  30. Leveillee, R. J. & Hoey, M. F. Radiofrequency interstitial tissue ablation: wet electrode. J. Endourol. 17, 563–577 (2003).

    Article  PubMed  Google Scholar 

  31. Salas, N., Ramanathan, R., Dummett, S. & Leveillee, R. J. Results of radiofrequency kidney tumor ablation: renal function preservation and oncologic efficacy. World J. Urol. 28, 583–591 (2010).

    Article  PubMed  Google Scholar 

  32. Best, S. L. et al. Long-term outcomes of renal tumor radio frequency ablation stratified by tumor diameter: size matters. J. Urol. 187, 1183–1189 (2012).

    Article  PubMed  Google Scholar 

  33. Ferakis, N., Bouropoulos, C., Granitsas, T., Mylona, S. & Poulias, I. Long-term results after computed-tomography-guided percutaneous radiofrequency ablation for small renal tumors. J. Endourol. 24, 1909–1913 (2010).

    Article  PubMed  Google Scholar 

  34. Ji, C. et al. Laparoscopic radiofrequency ablation of renal tumors: 32-month mean follow-up results of 106 patients. Urology 77, 798–802 (2011).

    Article  PubMed  Google Scholar 

  35. McDougal, W. S., Gervais, D. A., McGovern, F. J. & Mueller, P. R. Long-term followup of patients with renal cell carcinoma treated with radio frequency ablation with curative intent. J. Urol. 174, 61–63 (2005).

    Article  PubMed  Google Scholar 

  36. Gervais, D. A., McGovern, F. J., Arellano, R. S., McDougal, W. S. & Mueller, P. R. Radiofrequency ablation of renal cell carcinoma: part 1, Indications, results, and role in patient management over a 6-year period and ablation of 100 tumors. AJR Am. J. Roentgenol. 185, 64–71 (2005).

    Article  PubMed  Google Scholar 

  37. Gervais, D. A., Arellano, R. S. & Mueller, P. Percutaneous ablation of kidney tumors in nonsurgical candidates. Oncology (Williston Park) 19, 6–11 (2005).

    Google Scholar 

  38. Bandi, G., Hedican, S. P. & Nakada, S. Y. Current practice patterns in the use of ablation technology for the management of small renal masses at academic centers in the United States. Urology 71, 113–117 (2008).

    Article  PubMed  Google Scholar 

  39. Carey, R. I. & Leveillee, R. J. First prize: direct real-time temperature monitoring for laparoscopic and CT-guided radiofrequency ablation of renal tumors between 3 and 5 cm. J. Endourol. 21, 807–813 (2007).

    Article  PubMed  Google Scholar 

  40. Wingo, M. S. & Leveillee, R. J. Central and deep renal tumors can be effectively ablated: radiofrequency ablation outcomes with fiberoptic peripheral temperature monitoring. J. Endourol. 22, 1261–1267 (2008).

    Article  PubMed  Google Scholar 

  41. Leveillee, R. J. & Ramanathan, R. Optimization of image-guided targeting in renal focal therapy. J. Endourol. 24, 729–744 (2010).

    Article  PubMed  Google Scholar 

  42. Ahrar, K. et al. Percutaneous radiofrequency ablation of renal tumors: technique, complications, and outcomes. J. Vasc. Interv. Radiol. 16, 679–688 (2005).

    Article  PubMed  Google Scholar 

  43. Park, S. et al. Radiofrequency ablation of renal tumors: intermediate-term results. J. Endourol. 20, 569–573 (2006).

    Article  PubMed  Google Scholar 

  44. Raman, J. D. et al. Renal functional outcomes for tumours in a solitary kidney managed by ablative or extirpative techniques. BJU Int. 105, 496–500 (2010).

    Article  PubMed  Google Scholar 

  45. Arzola, J., Baughman, S. M., Hernandez, J. & Bishoff, J. T. Computed tomography-guided, resistance-based, percutaneous radiofrequency ablation of renal malignancies under conscious sedation at two years of follow-up. Urology 68, 983–987 (2006).

    Article  PubMed  Google Scholar 

  46. Hoffmann, R. T. et al. Renal cell carcinoma in patients with a solitary kidney after nephrectomy treated with radiofrequency ablation: mid term results. Eur. J. Radiol. 73, 652–656 (2010).

    Article  PubMed  Google Scholar 

  47. Zagoria, R. J. et al. Oncologic efficacy of CT-guided percutaneous radiofrequency ablation of renal cell carcinomas. AJR Am. J. Roentgenol. 189, 429–436 (2007).

    Article  PubMed  Google Scholar 

  48. Carrafiello, G. et al. Percutaneous radiofrequency thermal ablation of renal cell carcinoma: is it possible a day-hospital treatment? Int. J. Surg. 6 (Suppl. 1), S31–S35 (2008).

    Article  PubMed  Google Scholar 

  49. Su, L. M., Jarrett, T. W., Chan, D. Y., Kavoussi, L. R. & Solomon, S. B. Percutaneous computed tomography-guided radiofrequency ablation of renal masses in high surgical risk patients: preliminary results. Urology 61, 26–33 (2003).

    Article  PubMed  Google Scholar 

  50. Gupta, A. et al. General anesthesia and contrast-enhanced computed tomography to optimize renal percutaneous radiofrequency ablation: multi-institutional intermediate-term results. J. Endourol. 23, 1099–1105 (2009).

    Article  PubMed  Google Scholar 

  51. Bird, V. G., Carey, R. I., Ayyathurai, R. & Bird, V. Y. Management of renal masses with laparoscopic-guided radiofrequency ablation versus laparoscopic partial nephrectomy. J. Endourol. 23, 81–88 (2009).

    Article  PubMed  Google Scholar 

  52. Castle, S., Gorbatiy, V., Salas, N., Karnjanawanichkul, W. & Leveillee, R. Radiofrequency ablation of small renal masses: over 8 year experience at a single institution [abstract]. J. Urol. 185, e613 (2011).

    Article  Google Scholar 

  53. Karam, J. A. et al. Radiofrequency ablation (RFA) of renal tumors: clinical, radiographic, and pathologic results from a tertiary cancer centre. Eur. Urol. Suppl. 9, 246 (2010).

    Article  Google Scholar 

  54. Stern, J. M. et al. Intermediate comparison of partial nephrectomy and radiofrequency ablation for clinical T1a renal tumours. BJU Int. 100, 287–290 (2007).

    Article  PubMed  Google Scholar 

  55. Moore, C. et al. Effects of microwave ablation of the kidney. J. Endourol. 24, 439–444 (2010).

    Article  PubMed  Google Scholar 

  56. Muto, G. et al. Laparoscopic microwave ablation and enucleation of small renal masses: preliminary experience. Eur. Urol. 60, 173–176 (2011).

    Article  PubMed  Google Scholar 

  57. Simon, C. J., Dupuy, D. E. & Mayo-Smith, W. W. Microwave ablation: principles and applications. Radiographics 25 (Suppl. 1), S69–S83 (2005).

    Article  PubMed  Google Scholar 

  58. Wen, C. C. & Nakada, S. Y. Energy ablative techniques for treatment of small renal tumors. Curr. Opin. Urol. 16, 321–326 (2006).

    Article  PubMed  Google Scholar 

  59. Ahmed, M., Brace, C. L., Lee, F. T. Jr & Goldberg, S. N. Principles of and advances in percutaneous ablation. Radiology 258, 351–369 (2011).

    Article  PubMed  Google Scholar 

  60. Brace, C. L. Microwave tissue ablation: biophysics, technology, and applications. Crit. Rev. Biomed. Eng. 38, 65–78 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lubner, M. G., Brace, C. L., Hinshaw, J. L. & Lee, F. T. Jr. Microwave tumor ablation: mechanism of action, clinical results, and devices. J. Vasc. Interv. Radiol. 21, S192–S203 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hope, W. W. et al. Guidelines for power and time variables for microwave ablation in an in vivo porcine kidney. J. Surg. Res. 153, 263–267 (2009).

    Article  PubMed  Google Scholar 

  63. Laeseke, P. F., Lee, F. T. Jr, Sampson, L. A., van der Weide, D. W. & Brace, C. L. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes. J. Vasc. Interv. Radiol. 20, 1224–1229 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liang, P. et al. Ultrasound guided percutaneous microwave ablation for small renal cancer: initial experience. J. Urol. 180, 844–848 (2008).

    Article  PubMed  Google Scholar 

  65. Guan, W. et al. Microwave ablation versus partial nephrectomy for small renal tumors: Intermediate-term results. J. Surg. Oncol. 106, 316–321 (2012).

    Article  PubMed  Google Scholar 

  66. Clark, P. E., Woodruff, R. D., Zagoria, R. J. & Hall, M. C. Microwave ablation of renal parenchymal tumors before nephrectomy: phase I study. AJR Am. J. Roentgenol. 188, 1212–1214 (2007).

    Article  PubMed  Google Scholar 

  67. Castle, S. M., Salas, N. & Leveillee, R. J. Initial experience using microwave ablation therapy for renal tumor treatment: 18-month follow-up. Urology 77, 792–797 (2011).

    Article  PubMed  Google Scholar 

  68. Bai, J. et al. Initial experience with retroperitoneoscopic microwave ablation of clinical T(1a) renal tumors. J. Endourol. 24, 2017–2022 (2010).

    Article  PubMed  Google Scholar 

  69. Roggan, A. in Laser-Induced Interstitial Thermotherapy (eds Muller, G. & Roggan, A.) 10–44 (SPIE Optical Engineering Press, Bellingham, 1995).

    Google Scholar 

  70. Bown, S. G. Phototherapy in tumors. World J. Surg. 7, 700–709 (1983).

    Article  CAS  PubMed  Google Scholar 

  71. Dick, E. et al. Magnetic resonance imaging-guided laser thermal ablation of renal tumors. BJU Int. 90, 814–822 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Gettman, M. T. et al. Laparoscopic interstitial laser coagulation of renal tissue with and without hilar occlusion in the porcine model. J. Endourol. 16, 565–570 (2002).

    Article  PubMed  Google Scholar 

  73. de Jode, M. G., Vale, J. A. & Gedroyc, W. M. MR-guided laser thermoablation of inoperable renal tumors in an open-configuration interventional MR scanner: preliminary clinical experience in three cases. J. Magn. Reson. Imaging 10, 545–549 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Kariniemi, J., Ojala, R., Hellstrom, P. & Sequeiros, R. B. MRI-guided percutaneous laser ablation of small renal cell carcinoma: Initial clinical experience. Acta Radiol. 51, 467–472 (2010).

    Article  PubMed  Google Scholar 

  75. Kohrmann, K. U., Vohringer, P., Michel, M. S., Henkel, T. & Alken, P. Durability of laser probes in interstitial thermotherapy: investigations on an ex vivo model of effect of carbonization. J. Endourol. 15, 997–999 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. LaGrange, C. A., Gerber, E. W., Garrett, J. E., Lele, S. M. & Strup, S. E. Interstitial laser ablation of the kidney: acute and chronic porcine study using new-generation diffuser tip fiber. J. Endourol. 21, 1387–1391 (2007).

    Article  PubMed  Google Scholar 

  77. Lotfi, M. A., McCue, P. & Gomella, L. G. Laparoscopic interstitial contact laser ablation of renal lesions: an experimental model. J. Endourol. 8, 153–156 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Marberger, M. Ablation of renal tumours with extracorporeal high-intensity focused ultrasound. BJU Int. 99, 1273–1276 (2007).

    Article  PubMed  Google Scholar 

  79. Marberger, M., Schatzl, G., Cranston, D. & Kennedy, J. E. Extracorporeal ablation of renal tumours with high-intensity focused ultrasound. BJU Int. 95 (Suppl. 2), 52–55 (2005).

    Article  PubMed  Google Scholar 

  80. Dubinsky, T. J., Cuevas, C., Dighe, M. K., Kolokythas, O. & Hwang, J. H. High-intensity focused ultrasound: current potential and oncologic applications. AJR Am. J. Roentgenol. 190, 191–199 (2008).

    Article  PubMed  Google Scholar 

  81. Ritchie, R. W. et al. Extracorporeal high intensity focused ultrasound for renal tumours: a 3-year follow-up. BJU Int. 106, 1004–1009 (2010).

    Article  PubMed  Google Scholar 

  82. Davalos, R. V., Mir, I. L. & Rubinsky, B. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33, 223–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Lee, E. W. et al. Electron microscopic demonstration and evaluation of irreversible electroporation-induced nanopores on hepatocyte membranes. J. Vasc. Interv. Radiol. 23, 107–113 (2012).

    Article  PubMed  Google Scholar 

  84. Rubinsky, B. Irreversible electroporation in medicine. Technol. Cancer Res. Treat. 6, 255–260 (2007).

    Article  PubMed  Google Scholar 

  85. Deodhar, A. et al. Renal tissue ablation with irreversible electroporation: preliminary results in a porcine model. Urology 77, 754–760 (2011).

    Article  PubMed  Google Scholar 

  86. Olweny, E. O. et al. Irreversible electroporation: non-thermal and thermal capabilities for kidney ablation in a porcine model. J. Urol. 187, e344 (2012).

    Article  Google Scholar 

  87. Tracy, C. R., Kabbani, W. & Cadeddu, J. A. Irreversible electroporation (IRE): a novel method for renal tissue ablation. BJU Int. 107, 1982–1987 (2011).

    Article  PubMed  Google Scholar 

  88. Thomson, K. R. et al. Investigation of the safety of irreversible electroporation in humans. J. Vasc. Interv. Radiol. 22, 611–621 (2011).

    Article  PubMed  Google Scholar 

  89. Aron, M. et al. Laparoscopic renal cryoablation: 8-year, single surgeon outcomes. J. Urol. 183, 889–895 (2010).

    Article  PubMed  Google Scholar 

  90. Levinson, A. W. et al. Long-term oncological and overall outcomes of percutaneous radio frequency ablation in high risk surgical patients with a solitary small renal mass. J. Urol. 180, 499–504 (2008).

    Article  PubMed  Google Scholar 

  91. Takaki, H. et al. Midterm results of radiofrequency ablation versus nephrectomy for T1a renal cell carcinoma. Jpn J. Radiol. 28, 460–468 (2010).

    Article  PubMed  Google Scholar 

  92. Zagoria, R. J. et al. Long-term outcomes after percutaneous radiofrequency ablation for renal cell carcinoma. Urology 77, 1393–1397 (2011).

    Article  PubMed  Google Scholar 

  93. Psutka, S. P. et al. Long-term oncologic outcomes after radiofrequency ablation for T1 renal cell carcinoma. Eur. Urol. 63, 486–492 (2013).

    Article  PubMed  Google Scholar 

  94. Leveillee, R. J. et al. Oncologic outcomes using real-time peripheral thermometry-guided radiofrequency ablation of small renal masses. J. Endourol. 27, 1–10 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R. J. Leveillee made substantial contribution to the discussion of content and reviewed the manuscript before submission. All other authors researched data for the article, contributed to discussion of content, wrote the article and reviewed the manuscript before submission.

Corresponding author

Correspondence to Raymond J. Leveillee.

Ethics declarations

Competing interests

R. J. Leveillee declares grant/research support (inc. clinical trials) from Covidien and Intio and speakers bureau (honoraria) from Cook Urology and Intuitive Surgical. A. Castro Jr declares grant/research support (inc. clinical trials) from Boston Scientific. The other authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Castro, A., Jenkins, L., Salas, N. et al. Ablative therapies for small renal tumours. Nat Rev Urol 10, 284–291 (2013). https://doi.org/10.1038/nrurol.2013.68

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2013.68

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing