Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Active surveillance of small renal masses

Abstract

The increased diagnosis of small renal masses (SRMs) poses the challenge of how best to manage patients with tumours that are not likely to progress and cause death during their lifetime. Concerns regarding overdiagnosis and overtreatment of patients with low-risk or indolent disease has led to the introduction of active surveillance as an alternative to immediate intervention in select candidates. However, differentiating between benign or low-grade lesions and high-grade aggressive phenotypes is difficult. Renal biopsy, radiographic assessment, and clinical nomograms have been used before surgery to evaluate the probability of whether an SRM will exhibit characteristics of an aggressive cancer. SRM growth trends have been studied over periods of observation but no characteristics have been found to correlate with aggressive growth kinetics. Stratification of patients with SRMs according to risk status is crucial when considering whether active surveillance might be an appropriate treatment option. Factors that should be taken into account include comorbidities, a history of malignancy, pre-existing chronic kidney disease, life expectancy and patient preference. Standardized active surveillance protocols are currently lacking, and clinical trials designed to randomize patients with SRMs to receive either active surveillance or immediate treatment are sorely needed to address the existing evidence gap.

Key Points

  • Early detection of small renal masses (SRMs) has not changed the mortality rate of renal cell carcinoma, leading to concerns of overdiagnosis and overtreatment

  • Active surveillance with curative intent might be an appropriate alternative to immediate intervention for patients with low-risk or indolent disease

  • Differentiating between benign or low-grade lesions and high-grade aggressive phenotypes is challenging. Renal biopsy, radiographic assessment, and clinical nomograms have been used before surgery to evaluate malignant potential

  • SRM growth trends have been studied in patients over periods of observation but no characteristics have been found to correlate with aggressive growth kinetics

  • To date, all lesions that have progressed to metastases while under an initial period of observation have been >3 cm and have demonstrated positive growth rates over time

  • Stratification of patients with SRMs to identify those who might be suitable candidates for active surveillance should take into account comorbidities, a history of malignancy, pre-existing chronic kidney disease, life expectancy and patient preference

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Nephrometry score used for the prediction of malignancy and grade.
Figure 2: The heterogeneity of cancer progression.
Figure 3: Growth rates reported in studies of small renal masses under observation.
Figure 4: Management algorithm for patients with small renal masses.

References

  1. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 62, 10–29 (2012).

    PubMed  Article  Google Scholar 

  2. Chow, W. H. et al. Rising incidence of renal cell cancer in the United States. JAMA 281, 1628–1631 (1999).

    CAS  Article  PubMed  Google Scholar 

  3. Hollingsworth, J. M. et al. Rising incidence of small renal masses: a need to reassess treatment effect. J. Natl Cancer Inst. 98, 1331–1334 (2006).

    Article  PubMed  Google Scholar 

  4. Kane, C. J. et al. Renal cell cancer stage migration: analysis of the National Cancer Data Base. Cancer 113, 78–83 (2008).

    Article  PubMed  Google Scholar 

  5. Cooperberg, M. R. et al. Decreasing size at diagnosis of stage 1 renal cell carcinoma: analysis from the National Cancer Data Base, 1993 to 2004. J. Urol. 179, 2131–2135 (2008).

    Article  PubMed  Google Scholar 

  6. Jayson, M. & Sanders, H. Increased incidence of serendipitously discovered renal cell carcinoma. Urology 51, 203–205 (1998).

    CAS  Article  PubMed  Google Scholar 

  7. Kutikov, A. et al. Incidence of benign pathologic findings at partial nephrectomy for solitary renal mass presumed to be renal cell carcinoma on preoperative imaging. Urology 68, 737–740 (2006).

    Article  PubMed  Google Scholar 

  8. Crispen, P. L. et al. Outcomes following partial nephrectomy by tumor size. J. Urol. 180, 1912–1917 (2008).

    Article  PubMed  Google Scholar 

  9. Remzi, M. et al. Are small renal tumors harmless? Analysis of histopathological features according to tumors 4 cm or less in diameter. J. Urol. 176, 896–899 (2006).

    Article  PubMed  Google Scholar 

  10. Hollenbeck, B. K. et al. National utilization trends of partial nephrectomy for renal cell carcinoma: a case of underutilization? Urology 67, 254–259 (2006).

    Article  PubMed  Google Scholar 

  11. Campbell, S. C. et al. Guideline for management of the clinical T1 renal mass. J. Urol. 182, 1271–1279 (2009).

    PubMed  Article  Google Scholar 

  12. Huang, W. C. et al. Chronic kidney disease after nephrectomy in patients with renal cortical tumours: a retrospective cohort study. Lancet Oncol. 7, 735–740 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  13. McKiernan, J. et al. Natural history of chronic renal insufficiency after partial and radical nephrectomy. Urology 59, 816–820 (2002).

    Article  PubMed  Google Scholar 

  14. Go, A. S. et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004).

    CAS  Article  PubMed  Google Scholar 

  15. Huang, W. C. et al. Partial nephrectomy versus radical nephrectomy in patients with small renal tumors--is there a difference in mortality and cardiovascular outcomes? J. Urol. 181, 55–61 (2009).

    Article  PubMed  Google Scholar 

  16. Miller, D. C. et al. Renal and cardiovascular morbidity after partial or radical nephrectomy. Cancer 112, 511–520 (2008).

    Article  PubMed  Google Scholar 

  17. Sun, M. et al. A non-cancer-related survival benefit is associated with partial nephrectomy. Eur. Urol. 61, 725–731 (2011).

    Article  PubMed  Google Scholar 

  18. Thompson, R. H. et al. Radical nephrectomy for pT1a renal masses may be associated with decreased overall survival compared with partial nephrectomy. J. Urol. 179, 468–471 (2008).

    Article  PubMed  Google Scholar 

  19. Weight, C. J. et al. Partial nephrectomy is associated with improved overall survival compared to radical nephrectomy in patients with unanticipated benign renal tumours. Eur. Urol. 58, 293–298 (2010).

    Article  PubMed  Google Scholar 

  20. Zini, L. et al. Radical versus partial nephrectomy: effect on overall and noncancer mortality. Cancer 115, 1465–1471 (2009).

    Article  PubMed  Google Scholar 

  21. Tan, H. J. et al. Long-term survival following partial vs radical nephrectomy among older patients with early-stage kidney cancer. JAMA 307, 1629–1635 (2012).

    CAS  Article  PubMed  Google Scholar 

  22. Ljungberg, B. et al. EAU guidelines on renal cell carcinoma: the update. Eur. Urol. 58, 398–406 (2010).

    Article  PubMed  Google Scholar 

  23. Smaldone, M. C. et al. Does partial nephrectomy result in a durable overall survival benefit in the medicare population? J. Urol. 188, 2089–2094 (2012).

    Article  PubMed  Google Scholar 

  24. Van Poppel, H. et al. A prospective, randomised EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur. Urol. 59, 543–552 (2011).

    Article  PubMed  Google Scholar 

  25. Kim, S. P. et al. Contemporary trends in nephrectomy for renal cell carcinoma in the United States: results from a population based cohort. J. Urol. 186, 1779–1785 (2011).

    Article  PubMed  Google Scholar 

  26. Filson, C. P. et al. Surgeon characteristics and long-term trends in the adoption of laparoscopic radical nephrectomy. J. Urol. 185, 2072–2077 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Smaldone, M. C. et al. Assessing performance trends in laparoscopic nephrectomy and nephron-sparing surgery for localized renal tumors. Urology 80, 286–291 (2012).

    Article  PubMed  Google Scholar 

  28. Dulabon, L. M. et al. Trends in renal tumor surgery delivery within the United States. Cancer 116, 2316–2321 (2010).

    PubMed  Google Scholar 

  29. Gill, I. S. et al. Comparison of 1,800 laparoscopic and open partial nephrectomies for single renal tumors. J. Urol. 178, 41–46 (2007).

    Article  PubMed  Google Scholar 

  30. Scoll, B. J. et al. Robot-assisted partial nephrectomy: a large single-institutional experience. Urology 75, 1328–1334 (2010).

    Article  PubMed  Google Scholar 

  31. Kutikov, A., Kunkle, D. A. & Uzzo, R. G. Focal therapy for kidney cancer: a systematic review. Curr. Opin. Urol. 19, 148–153 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Welch, H. G. & Black, W. C. Overdiagnosis in cancer. J. Natl Cancer Inst. 102, 605–613 (2010).

    Article  PubMed  Google Scholar 

  33. Chou, R. et al. Screening for prostate cancer: a review of the evidence for the US Preventive Services Task Force. Ann. Intern. Med. 155, 762–771 (2011).

    Article  PubMed  Google Scholar 

  34. Wilt, T. J. et al. The Prostate cancer Intervention Versus Observation Trial: VA/NCI/AHRQ Cooperative Studies Program #407 (PIVOT): design and baseline results of a randomized controlled trial comparing radical prostatectomy to watchful waiting for men with clinically localized prostate cancer. Contemp. Clin. Trials 30, 81–87 (2009).

    Article  PubMed  Google Scholar 

  35. Uzzo, R. G. Renal masses--to treat or not to treat? If that is the question are contemporary biomarkers the answer? J. Urol. 180, 433–434 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lane, B. R. et al. Renal mass biopsy—a renaissance? J. Urol. 179, 20–27 (2008).

    Article  PubMed  Google Scholar 

  37. Wang, R. et al. Accuracy of percutaneous core biopsy in management of small renal masses. Urology 73, 586–590 (2009).

    Article  PubMed  Google Scholar 

  38. Lechevallier, E. et al. Fine-needle percutaneous biopsy of renal masses with helical CT guidance. Radiology 216, 506–510 (2000).

    CAS  Article  PubMed  Google Scholar 

  39. Blumenfeld, A. J. et al. Percutaneous biopsy of renal cell carcinoma underestimates nuclear grade. Urology 76, 610–613 (2010).

    Article  PubMed  Google Scholar 

  40. Leveridge, M. J. et al. Outcomes of small renal mass needle core biopsy, nondiagnostic percutaneous biopsy, and the role of repeat biopsy. Eur. Urol. 60, 578–584 (2011).

    Article  PubMed  Google Scholar 

  41. Mason, R. J. et al. Growth kinetics of renal masses: analysis of a prospective cohort of patients undergoing active surveillance. Eur. Urol. 59, 863–867 (2011).

    Article  PubMed  Google Scholar 

  42. Rothman, J. et al. Pathologic concordance of sporadic synchronous bilateral renal masses. Urology 72, 138–142 (2008).

    Article  PubMed  Google Scholar 

  43. Pal, S. K. et al. Breaking through a plateau in renal cell carcinoma therapeutics: development and incorporation of biomarkers. Mol. Cancer Ther. 9, 3115–3125 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Frank, I. et al. Solid renal tumors: an analysis of pathological features related to tumor size. J. Urol. 170, 2217–2220 (2003).

    Article  PubMed  Google Scholar 

  45. Thompson, R. H. et al. Tumor size is associated with malignant potential in renal cell carcinoma cases. J. Urol. 181, 2033–2036 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rothman, J. et al. Histopathological characteristics of localized renal cell carcinoma correlate with tumor size: a SEER analysis. J. Urol. 181, 29–33 (2009).

    Article  PubMed  Google Scholar 

  47. Kunkle, D. A. et al. Tumor size predicts synchronous metastatic renal cell carcinoma: implications for surveillance of small renal masses. J. Urol. 177, 1692–1696 (2007).

    Article  PubMed  Google Scholar 

  48. Nguyen, M. M. & Gill, I. S. Effect of renal cancer size on the prevalence of metastasis at diagnosis and mortality. J. Urol. 181, 1020–1027 (2009).

    Article  PubMed  Google Scholar 

  49. Thompson, R. H. et al. Metastatic renal cell carcinoma risk according to tumor size. J. Urol. 182, 41–45 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Duffey, B. G. et al. The relationship between renal tumor size and metastases in patients with von Hippel-Lindau disease. J. Urol. 172, 63–65 (2004).

    Article  PubMed  Google Scholar 

  51. Schachter, L. R. et al. The impact of tumour location on the histological subtype of renal cortical tumours. BJU Int. 98, 63–66 (2006).

    Article  PubMed  Google Scholar 

  52. Venkatesh, R. et al. Laparoscopic partial nephrectomy for renal masses: effect of tumor location. Urology 67, 1169–1174 (2006).

    Article  PubMed  Google Scholar 

  53. Kutikov, A. & Uzzo, R. G. The R. E. N. A. L. nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J. Urol. 182, 844–853 (2009).

    Article  PubMed  Google Scholar 

  54. Kutikov, A. et al. Anatomic features of enhancing renal masses predict malignant and high-grade pathology: a preoperative nomogram using the RENAL Nephrometry score. Eur. Urol. 60, 241–248 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lawrentschuk, N. et al. Functional imaging of renal cell carcinoma. Nat. Rev. Urol. 7, 258–266 (2010).

    Article  PubMed  Google Scholar 

  56. Lawrentschuk, N. et al. Positron emission tomography (PET), immuno-PET and radioimmunotherapy in renal cell carcinoma: a developing diagnostic and therapeutic relationship. BJU Int. 97, 916–922 (2006).

    CAS  Article  PubMed  Google Scholar 

  57. Divgi, C. R. et al. Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol. 8, 304–310 (2007).

    CAS  Article  PubMed  Google Scholar 

  58. Divgi, C. R. et al. Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT trial. J. Clin. Oncol. 31, 187–194 (2013).

    Article  PubMed  Google Scholar 

  59. Lane, B. R. et al. Active treatment of localized renal tumors may not impact overall survival in patients aged 75 years or older. Cancer 116, 3119–3126 (2010).

    Article  PubMed  Google Scholar 

  60. Santos Arrontes, D. et al. Survival analysis of clear cell renal carcinoma according to the Charlson comorbidity index. J. Urol. 179, 857–861 (2008).

    Article  PubMed  Google Scholar 

  61. Hollingsworth, J. M. et al. Five-year survival after surgical treatment for kidney cancer: a population-based competing risk analysis. Cancer 109, 1763–1768 (2007).

    Article  PubMed  Google Scholar 

  62. Kutikov, A. et al. Evaluating overall survival and competing risks of death in patients with localized renal cell carcinoma using a comprehensive nomogram. J. Clin. Oncol. 28, 311–317 (2010).

    Article  PubMed  Google Scholar 

  63. Lughezzani, G. et al. Population-based external validation of a competing-risks nomogram for patients with localized renal cell carcinoma. J. Clin. Oncol. 28, e299–e300 (2010).

    Article  PubMed  Google Scholar 

  64. Kutikov, A. et al. Competing risks of death in patients with localized renal cell carcinoma: a comorbidity based model. J. Urol. 188, 2077–2083 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jeldres, C. et al. Can renal mass biopsy assessment of tumor grade be safely substituted for by a predictive model? J. Urol. 182, 2585–2589 (2009).

    Article  PubMed  Google Scholar 

  66. Lane, B. R. et al. A preoperative prognostic nomogram for solid enhancing renal tumors 7 cm or less amenable to partial nephrectomy. J. Urol. 178, 429–434 (2007).

    Article  PubMed  Google Scholar 

  67. Wang, H. K. et al. External validation of a nomogram using RENAL nephrometry score to predict high grade renal cell carcinoma. J. Urol. 187, 1555–1560 (2012).

    Article  PubMed  Google Scholar 

  68. Smaldone, M. C. et al. Small renal masses progressing to metastases under active surveillance: a systematic review and pooled analysis. Cancer 118, 997–1006 (2012).

    Article  PubMed  Google Scholar 

  69. Jewett, M. A. et al. Active surveillance of small renal masses: progression patterns of early stage kidney cancer. Eur. Urol. 60, 39–44 (2011).

    Article  PubMed  Google Scholar 

  70. Volpe, A. et al. The natural history of incidentally detected small renal masses. Cancer 100, 738–745 (2004).

    Article  PubMed  Google Scholar 

  71. Ozono, S. et al. Tumor doubling time of renal cell carcinoma measured by CT: collaboration of Japanese Society of Renal Cancer. Jpn J. Clin. Oncol. 34, 82–85 (2004).

    Article  PubMed  Google Scholar 

  72. Crispen, P. L. et al. Natural history, growth kinetics, and outcomes of untreated clinically localized renal tumors under active surveillance. Cancer 115, 2844–2852 (2009).

    Article  PubMed  Google Scholar 

  73. Chawla, S. N. et al. The natural history of observed enhancing renal masses: meta-analysis and review of the world literature. J. Urol. 175, 425–431 (2006).

    Article  PubMed  Google Scholar 

  74. Haramis, G. et al. Natural history of renal cortical neoplasms during active surveillance with follow-up longer than 5 years. Urology 77, 787–791 (2011).

    Article  PubMed  Google Scholar 

  75. Mues, A. C. et al. Active surveillance for larger (cT1bN0M0 and cT2N0M0) renal cortical neoplasms. Urology 76, 620–623 (2010).

    Article  PubMed  Google Scholar 

  76. Siu, W. et al. Growth rates of renal cell carcinoma and oncocytoma under surveillance are similar. Urol. Oncol. 25, 115–119 (2007).

    Article  PubMed  Google Scholar 

  77. Neuzillet, Y. et al. Follow-up of renal oncocytoma diagnosed by percutaneous tumor biopsy. Urology 66, 1181–1185 (2005).

    Article  PubMed  Google Scholar 

  78. Kunkle, D. A. et al. Enhancing renal masses with zero net growth during active surveillance. J. Urol. 177, 849–853 (2007).

    Article  PubMed  Google Scholar 

  79. Bosniak, M. A. et al. Small renal parenchymal neoplasms: further observations on growth. Radiology 197, 589–597 (1995).

    CAS  Article  PubMed  Google Scholar 

  80. Wehle, M. J. et al. Conservative management of incidental contrast-enhancing renal masses as safe alternative to invasive therapy. Urology 64, 49–52 (2004).

    Article  PubMed  Google Scholar 

  81. Dall'Era, M. A. et al. Active surveillance for early-stage prostate cancer: review of the current literature. Cancer 112, 1650–1659 (2008).

    Article  PubMed  Google Scholar 

  82. Crispen, P. L. et al. Delayed intervention of sporadic renal masses undergoing active surveillance. Cancer 112, 1051–1057 (2008).

    Article  PubMed  Google Scholar 

  83. Abouassaly, R. et al. What is the best treatment strategy for incidentally detected small renal masses? A decision analysis. BJU Int. 108, E223–E231 (2011).

    Article  PubMed  Google Scholar 

  84. Crispen, P. L. & Uzzo, R. G. The natural history of untreated renal masses. BJU Int. 99, 1203–1207 (2007).

    Article  PubMed  Google Scholar 

  85. Fujimoto, H. et al. Intraductal tumor involvement and renal parenchymal invasion of transitional cell carcinoma in the renal pelvis. J. Urol. 153, 57–60 (1995).

    CAS  Article  PubMed  Google Scholar 

  86. Oda, T. et al. Growth rates of primary and metastatic lesions of renal cell carcinoma. Int. J. Urol. 8, 473–477 (2001).

    CAS  Article  PubMed  Google Scholar 

  87. Kato, M. et al. Natural history of small renal cell carcinoma: evaluation of growth rate, histological grade, cell proliferation and apoptosis. J. Urol. 172, 863–866 (2004).

    Article  PubMed  Google Scholar 

  88. Sowery, R. D. & Siemens, D. R. Growth characteristics of renal cortical tumors in patients managed by watchful waiting. Can. J. Urol. 11, 2407–2410 (2004).

    PubMed  Google Scholar 

  89. Lamb, G. W. et al. Management of renal masses in patients medically unsuitable for nephrectomy--natural history, complications, and outcome. Urology 64, 909–913 (2004).

    Article  PubMed  Google Scholar 

  90. Kouba, E. et al. Watchful waiting for solid renal masses: insight into the natural history and results of delayed intervention. J. Urol. 177, 466–470 (2007).

    Article  PubMed  Google Scholar 

  91. Abou Youssif, T. et al. Active surveillance for selected patients with renal masses: updated results with long-term follow-up. Cancer 110, 1010–1014 (2007).

    Article  PubMed  Google Scholar 

  92. Fernando, H. S., Duvuru, S. & Hawkyard, S. J. Conservative management of renal masses in the elderly: our experience. Int. Urol. Nephrol. 39, 203–207 (2007).

    Article  PubMed  Google Scholar 

  93. Matsuzaki, M. et al. Conservative management of small renal tumors. Hinyokika Kiyo 53, 207–211 (2007).

    PubMed  Google Scholar 

  94. Abouassaly, R., Lane, B. R. & Novick, A. C. Active surveillance of renal masses in elderly patients. J. Urol. 180, 505–508 (2008).

    Article  PubMed  Google Scholar 

  95. Beisland, C. et al. Observation should be considered as an alternative in management of renal masses in older and comorbid patients. Eur. Urol. 55, 1419–1427 (2009).

    Article  PubMed  Google Scholar 

  96. Rosales, J. C. et al. Active surveillance for renal cortical neoplasms. J. Urol. 183, 1698–1702 (2010).

    Article  PubMed  Google Scholar 

  97. Hwang, C. K. et al. Estimated volume growth characteristics of renal tumors undergoing active surveillance. Can. J. Urol. 17, 5459–5464 (2010).

    PubMed  Google Scholar 

  98. Li, X. S. et al. Growth pattern of renal cell carcinoma (RCC) in patients with delayed surgical intervention. J. Cancer Res. Clin. Oncol. 138, 269–274 (2012).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. C. Smaldone, A. T. Corcoran and R. G. Uzzo researched data for the article, contributed to discussion of content and reviewed the manuscript before submission. M. C. Smaldone wrote the article.

Corresponding author

Correspondence to Marc C. Smaldone.

Ethics declarations

Competing interests

R. G. Uzzo declares he has acted as a consultant for Wilex AG. The other authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smaldone, M., Corcoran, A. & Uzzo, R. Active surveillance of small renal masses. Nat Rev Urol 10, 266–274 (2013). https://doi.org/10.1038/nrurol.2013.62

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2013.62

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing