Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Potential biofluid markers and treatment targets for renal cell carcinoma

Abstract

Renal cell carcinoma (RCC) is the 13th most common cancer in the world and one of the few cancers for which incidence is increasing. This disease is generally asymptomatic at an early stage and is highly metastatic. Frequently discovered by physicians in the process of working up other diseases such as acute kidney injury, RCC is often discovered in an advanced form and many patients have metastases at the time of diagnosis. Given that life expectancy with currently approved therapies for metastatic RCC is approximately 1–2 years, biomarkers for RCC that will enable early detection are urgently needed. Although it is unlikely that highly sensitive and specific biomarkers will be identified in the near future that are useful for screening the general population, a noninvasive marker or set of markers could soon be used in general medicine, nephrology, and urology clinics to screen patients at increased risk of RCC. In addition to the ongoing need for RCC biomarkers, the frequent resistance reported with currently available targeted therapies makes the identification of new therapeutic targets similarly important. Many promising leads for new targeted therapies have come to light; some of these therapies are in clinical trials and others are still being evaluated in the laboratory.

Key Points

  • Renal cell carcinoma (RCC) incidence and mortality rates are increasing with every year; this disease is frequently asymptomatic in its early stages and can be highly metastatic

  • Seven targeted therapies have been approved by the FDA in the past 7 years for patients with metastatic RCC; however, all of these drugs have been associated with resistance

  • Even with targeted therapy, progression-free survival for patients with metastatic RCC rarely extends beyond 2 years

  • Biomarkers are needed for the early screening of patients at risk of RCC and the identification of novel therapeutic targets should accelerate the development of new or modified drugs

  • The key biofluid markers for RCC are 14-3-3 protein β/α, kidney injury molecule 1, quinolinate, aquaporin 1, adipophilin, and several microRNAs (all of which are non-RCC-specific)

  • Currently available targeted drugs include multikinase and mammalian target of rapamycin C1 inhibitors; programmed death 1, histone deacetylase, and chromosome region maintenance protein 1 inhibitors are in clinical trials

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Promising therapeutic targets for RCC.

Similar content being viewed by others

References

  1. Ljungberg, B. et al. The epidemiology of renal cell carcinoma. Eur. Urol. 60, 615–621 (2011).

    Article  PubMed  Google Scholar 

  2. Eheman, C. et al. Annual Report to the Nation on the status of cancer, 1975–2008, featuring cancers associated with excess weight and lack of sufficient physical activity. Cancer 118, 2338–2366 (2012).

    Article  PubMed  Google Scholar 

  3. Hunt, J. D., van der Hel, O. L., McMillan, G. P., Boffetta, P. & Brennan, P. Renal cell carcinoma in relation to cigarette smoking: meta-analysis of 24 studies. Int. J. Cancer 114, 101–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Cowey, C. L. & Hutson, T. E. Molecularly targeted agents for renal cell carcinoma: the next generation. Clin. Adv. Hematol. Oncol. 8, 357–364 (2010).

    PubMed  Google Scholar 

  5. Ramana, J. RCDB: Renal Cancer Gene Database. BMC Res. Notes 5, 246 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vajdic, C. M. et al. Cancer incidence before and after kidney transplantation. JAMA 296, 2823–2831 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Stewart, J. H. et al. The pattern of excess cancer in dialysis and transplantation. Nephrol. Dial. Transplant. 24, 3225–3231 (2009).

    Article  PubMed  Google Scholar 

  8. Chow, W. H., Dong, L. M. & Devesa, S. S. Epidemiology and risk factors for kidney cancer. Nat. Rev. Urol. 7, 245–257 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Choyke, P. L. Radiologic evaluation of hematuria: guidelines from the American College of Radiology's appropriateness criteria. Am. Fam. Physician 78, 347–352 (2008).

    PubMed  Google Scholar 

  10. Muslin, A. J., Tanner, J. W., Allen, P. M. & Shaw, A. S. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889–897 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Tzivion, G., Luo, Z. & Avruch, J. A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature 394, 88–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Zha, J., Harada, H., Yang, E., Jockel, J. & Korsmeyer, S. J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87, 619–628 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, L., Chen, J. & Fu, H. Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins. Proc. Natl Acad. Sci. USA 96, 8511–8515 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Minamida, S. et al. 14-3-3 protein beta/alpha as a urinary biomarker for renal cell carcinoma: proteomic analysis of cyst fluid. Anal. Bioanal. Chem. 401, 245–252 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Liang, S. et al. Quantitative protein expression profiling of 14-3-3 isoforms in human renal carcinoma shows 14-3-3 epsilon is involved in limitedly increasing renal cell proliferation. Electrophoresis 30, 4152–4162 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Ichimura, T. et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J. Biol. Chem. 273, 4135–4142 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Ichimura, T., Hung, C. C., Yang, S. A., Stevens, J. L. & Bonventre, J. V. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am. J. Physiol. 286, F552–F563 (2004).

    CAS  Google Scholar 

  18. Han, W. K., Bailly, V., Abichandani, R., Thadhani, R. & Bonventre, J. V. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 62, 237–244 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, Z., Humphreys, B. D. & Bonventre, J. V. Shedding of the urinary biomarker kidney injury molecule-1 (KIM-1) is regulated by MAP kinases and juxtamembrane region. J. Am. Soc. Nephrol. 18, 2704–2714 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Han, W. K. et al. Human kidney injury molecule-1 is a tissue and urinary tumor marker of renal cell carcinoma. J. Am. Soc. Nephrol. 16, 1126–1134 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Ganti, S. & Weiss, R. H. Urine metabolomics for kidney cancer detection and biomarker discovery. Urol. Oncol. 29, 551–557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stone, T. W. & Darlington, L. G. Endogenous kynurenines as targets for drug discovery and development. Nat. Rev. Drug Discov. 1, 609–620 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Brauch, H. et al. VHL alterations in human clear cell renal cell carcinoma: association with advanced tumor stage and a novel hot spot mutation. Cancer Res. 60, 1942–1948 (2000).

    CAS  PubMed  Google Scholar 

  24. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  PubMed  Google Scholar 

  25. Perroud, B., Ishimaru, T., Borowsky, A. D. & Weiss, R. H. Grade-dependent proteomics characterization of kidney cancer. Mol. Cell. Proteomics 8, 971–985 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Popov, A. & Schultze, J. L. IDO-expressing regulatory dendritic cells in cancer and chronic infection. J. Mol. Med. 86, 145–160 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Chen, W. IDO: more than an enzyme. Nat. Immunol. 12, 809–811 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Godin-Ethier, J. et al. Human activated T lymphocytes modulate IDO expression in tumors through Th1/Th2 balance. J. Immunol. 183, 7752–7760 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Morrissey, J. J., London, A. N., Luo, J. & Kharasch, E. D. Urinary biomarkers for the early diagnosis of kidney cancer. Mayo Clin. Proc. 85, 413–421 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang, Y. et al. Expression of aquaporin 1 in primary renal tumors: a prognostic indicator for clear-cell renal cell carcinoma. Eur. Urol. 56, 690–698 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Takenawa, J. et al. Transcript levels of aquaporin 1 and carbonic anhydrase IV as predictive indicators for prognosis of renal cell carcinoma patients after nephrectomy. Int. J. Cancer 79, 1–7 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Yao, M. et al. Gene expression analysis of renal carcinoma: adipose differentiation-related protein as a potential diagnostic and prognostic biomarker for clear-cell renal carcinoma. J. Pathol. 205, 377–387 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Yao, M. et al. Expression of adipose differentiation-related protein: a predictor of cancer-specific survival in clear cell renal carcinoma. Clin. Cancer Res. 13, 152–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Fuhrman, S. A., Lasky, L. C. & Limas, C. Prognostic significance of morphologic parameters in renal cell carcinoma. Am. J. Surg. Pathol. 6, 655–663 (1982).

    Article  CAS  PubMed  Google Scholar 

  35. Krishnan, B. & Truong, L. D. Renal epithelial neoplasms: the diagnostic implications of electron microscopic study in 55 cases. Hum. Pathol. 33, 68–79 (2002).

    Article  PubMed  Google Scholar 

  36. Tun, H. W. et al. Pathway signature and cellular differentiation in clear cell renal cell carcinoma. PLoS ONE 5, e10696 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Shukla, G. C., Singh, J. & Barik, S. MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol. Cell. Pharmacol. 3, 83–92 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gerin, I. et al. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. Am. J. Physiol. Endocrinol. Metab. 299, E198–E206 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pulakat, L., Aroor, A. R., Gul, R. & Sowers, J. R. Cardiac insulin resistance and microRNA modulators. Exp. Diabetes Res. 2012, 654904 (2012).

    Article  PubMed  CAS  Google Scholar 

  40. Lee, D. Y., Deng, Z., Wang, C. H. & Yang, B. B. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc. Natl Acad. Sci. USA 104, 20350–20355 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513–10518 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu, W., Qin, W., Atasoy, U. & Sauter, E. R. Circulating microRNAs in breast cancer and healthy subjects. BMC Res. Notes 2, 89 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Resnick, K. E. et al. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol. Oncol. 112, 55–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Redova, M. et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J. Translat. Med. 10, 55 (2012).

    Article  CAS  Google Scholar 

  45. Godlewski, J. et al. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol. Cell 37, 620–632 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, H. et al. Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett. 316, 196–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Song, J. et al. Identification of suitable reference genes for qPCR analysis of serum microRNA in gastric cancer patients. Dig. Dis. Sci. 57, 897–904 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Belldegrun, A. S. et al. Cancer-specific survival outcomes among patients treated during the cytokine era of kidney cancer (1989–2005): a benchmark for emerging targeted cancer therapies. Cancer 113, 2457–2463 (2008).

    Article  PubMed  Google Scholar 

  49. Muller, Y. A. et al. Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc. Natl Acad. Sci. USA 94, 7192–7197 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cross, M. J., Dixelius, J., Matsumoto, T. & Claesson-Welsh, L. VEGF-receptor signal transduction. Trends Biochem. Sci. 28, 488–494 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Nickerson, M. L. et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin. Cancer Res. 14, 4726–4734 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Weiss, R. H. & Lin, P. Y. Kidney cancer: identification of novel targets for therapy. Kidney Int. 69, 224–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Nicol, D. et al. Vascular endothelial growth factor expression is increased in renal cell carcinoma. J. Urol. 157, 1482–1486 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Wilhelm, S. M. et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099–7109 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Huang, D. et al. Sunitinib acts primarily on tumor endothelium rather than tumor cells to inhibit the growth of renal cell carcinoma. Cancer Res. 70, 1053–1062 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Presta, L. G. et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 57, 4593–4599 (1997).

    CAS  PubMed  Google Scholar 

  57. Sloan, B. & Scheinfeld, N. S. Pazopanib, a VEGF receptor tyrosine kinase inhibitor for cancer therapy. Curr. Opin. Investig. Drugs 9, 1324–1335 (2008).

    CAS  PubMed  Google Scholar 

  58. Rini, B. I. et al. Phase 1 dose-escalation trial of tremelimumab plus sunitinib in patients with metastatic renal cell carcinoma. Cancer 117, 758–767 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Rini, B. I. et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet 378, 1931–1939 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Shackelford, D. B. & Shaw, R. J. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563–575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Baldewijns, M. M. et al. VHL and HIF signalling in renal cell carcinogenesis. J. Pathol. 221, 125–138 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Robb, V. A., Karbowniczek, M., Klein-Szanto, A. J. & Henske, E. P. Activation of the mTOR signaling pathway in renal clear cell carcinoma. J. Urol. 177, 346–352 (2007).

    Article  PubMed  Google Scholar 

  63. Herman, J. G. et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl Acad. Sci. USA 91, 9700–9704 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lowinger, T. B., Riedl, B., Dumas, J. & Smith, R. A. Design and discovery of small molecules targeting raf-1 kinase. Curr. Pharmacol. Des. 8, 2269–2278 (2002).

    Article  CAS  Google Scholar 

  65. Mendel, D. B. et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res. 9, 327–337 (2003).

    CAS  PubMed  Google Scholar 

  66. Solowiej, J. et al. Characterizing the effects of the juxtamembrane domain on vascular endothelial growth factor receptor-2 enzymatic activity, autophosphorylation, and inhibition by axitinib. Biochemistry 48, 7019–7031 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Kent, D. et al. Regulation of hematopoietic stem cells by the steel factor/KIT signaling pathway. Clin. Cancer Res. 14, 1926–1930 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Dibb, N. J., Dilworth, S. M. & Mol, C. D. Switching on kinases: oncogenic activation of BRAF and the PDGFR family. Nat. Rev. Cancer 4, 718–727 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Gril, B. et al. The B-Raf status of tumor cells may be a significant determinant of both antitumor and anti-angiogenic effects of pazopanib in xenograft tumor models. PLoS ONE 6, e25625 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Inoue, H., Hwang, S. H., Wecksler, A. T., Hammock, B. D. & Weiss, R. H. Sorafenib attenuates p21 in kidney cancer cells and augments cell death in combination with DNA-damaging chemotherapy. Cancer Biol. Ther. 12, 827–836 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Weiss, R. H. et al. p21 is a prognostic marker for renal cell carcinoma: implications for novel therapeutic approaches. J. Urol. 177, 63–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Park, S. H., Park, J. Y. & Weiss, R. H. Antisense attenuation of p21 sensitizes kidney cancer to apoptosis in response to conventional DNA damaging chemotherapy associated with enhancement of phospho-p53. J. Urol. 180, 352–360 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ribas, A. Tumor immunotherapy directed at PD-1. N. Engl. J. Med. 366, 2517–2519 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, J. et al. Renal tubular epithelial expression of the coinhibitory molecule B7-DC (programmed death-1 ligand). J. Nephrol. 19, 429–438 (2006).

    CAS  PubMed  Google Scholar 

  75. Thompson, R. H. et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 66, 3381–3385 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Thompson, R. H. et al. PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. Clin. Cancer Res. 13, 1757–1761 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Berger, R. et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin. Cancer Res. 14, 3044–3051 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Brahmer, J. R. et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28, 3167–3175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  82. Chateauvieux, S., Morceau, F., Dicato, M. & Diederich, M. Molecular and therapeutic potential and toxicity of valproic acid. J. Biomed. Biotechnol. doi:10.1155/2010/479364.

    Article  CAS  Google Scholar 

  83. Kuo, M. H. & Allis, C. D. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20, 615–626 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Harms, K. L. & Chen, X. Histone deacetylase 2 modulates p53 transcriptional activities through regulation of p53-DNA binding activity. Cancer Res. 67, 3145–3152 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Duvic, M. & Vu, J. Vorinostat: a new oral histone deacetylase inhibitor approved for cutaneous T-cell lymphoma. Expert Opin. Investig. Drugs 16, 1111–1120 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Carew, J. S., Giles, F. J. & Nawrocki, S. T. Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett. 269, 7–17 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Fritzsche, F. R. et al. Class I histone deacetylases 1, 2 and 3 are highly expressed in renal cell cancer. BMC Cancer 8, 381 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Jones, J. et al. The histone deacetylase inhibitor valproic acid alters growth properties of renal cell carcinoma in vitro and in vivo. J. Cell. Mol. Med. 13, 2376–2385 (2009).

    Article  PubMed  Google Scholar 

  90. Mahalingam, D. et al. Vorinostat enhances the activity of temsirolimus in renal cell carcinoma through suppression of survivin levels. Clin. Cancer Res. 16, 141–153 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Dasari, A. et al. A phase I study of sorafenib and vorinostat in patients with advanced solid tumors with expanded cohorts in renal cell carcinoma and non-small cell lung cancer. Invest. New Drugs 1, 115–125 (2012).

    Google Scholar 

  92. Shen, L. et al. Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models. PLoS ONE 7, e30815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Whiteside, T. L. Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Sem. Cancer Biol. 16, 3–15 (2006).

    Article  CAS  Google Scholar 

  94. Turner, J. G. & Sullivan, D. M. CRM1-mediated nuclear export of proteins and drug resistance in cancer. Curr. Med. Chem. 15, 2648–2655 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Koyama, M. & Matsuura, Y. An allosteric mechanism to displace nuclear export cargo from CRM1 and RanGTP by RanBP1. EMBO J. 29, 2002–2013 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jung, Y. S., Qian, Y. & Chen, X. Examination of the expanding pathways for the regulation of p21 expression and activity. Cell. Signal. 22, 1003–1012 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Noske, A. et al. Expression of the nuclear export protein chromosomal region maintenance/exportin 1/Xpo1 is a prognostic factor in human ovarian cancer. Cancer 112, 1733–1743 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. van der Watt, P. J. et al. The Karyopherin proteins, Crm1 and Karyopherin beta1, are overexpressed in cervical cancer and are critical for cancer cell survival and proliferation. Int. J. Cancer 124, 1829–1840 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sakakibara, K. et al. CBS9106 is a novel reversible oral CRM1 inhibitor with CRM1 degrading activity. Blood 14, 3922–3931 (2011).

    Article  CAS  Google Scholar 

  100. Shao, C. et al. p53-dependent anticancer effects of leptomycin B on lung adenocarcinoma. Cancer Chemother. Pharmacol. 67, 1369–1380 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Turner, J. G., Dawson, J. & Sullivan, D. M. Nuclear export of proteins and drug resistance in cancer. Biochem. Pharmacol. 83, 1021–1032 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Turner, J. G., Dawson J. L., Shacham S., Kauffman M. & Sullivan, D. M. Novel inhibitors of nuclear export as a treatment for multiple myeloma. Presented at the 2011 AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics.

  103. Inoue, H. et al. CRM1 Blockade by Selective Inhibitors of Nuclear Export (SINE) attenuates Kidney Cancer Growth. J. Urol. doi:10.1016/j.juro.2012.10.018.

    Article  CAS  Google Scholar 

  104. Inoue, H., Kauffman, M., Shacham, S., Landesman, Y. & Weiss, R. H. Evaluation of selective inhibitors of nuclear export (SINE) CRM1 inhibitors for the treatment of renal cell carcinoma (RCC). Presented at the 2012 ASCO Annual Meeting.

  105. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  106. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  107. Semenza, G. L. Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov. Today 12, 853–859 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Klatte, T. et al. Hypoxia-inducible factor 1 alpha in clear cell renal cell carcinoma. Clin. Cancer Res. 13, 7388–7393 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Carew, J. S. et al. ELR510444 inhibits tumor growth and angiogenesis by abrogating HIF activity and disrupting microtubules in renal cell carcinoma. PLoS ONE 7, e31120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Issemann, I. & Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645–650 (1990).

    Article  CAS  PubMed  Google Scholar 

  111. Ribet, C. et al. Peroxisome proliferator-activated receptor-alpha control of lipid and glucose metabolism in human white adipocytes. Endocrinology 151, 123–133 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Grabacka, M., Plonka, P. M., Urbanska, K. & Reiss, K. Peroxisome proliferator-activated receptor alpha activation decreases metastatic potential of melanoma cells in vitro via down-regulation of Akt. Clin. Cancer Res. 12, 3028–3036 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Tachibana, K. et al. Analysis of PPAR alpha function in human kidney cell line using siRNA. Nucleic Acids Symp. Ser. (Oxf). 50, 257–258 (2006).

    Article  CAS  Google Scholar 

  114. Peters, J. M., Cheung, C. & Gonzalez, F. J. Peroxisome proliferator-activated receptor-alpha and liver cancer: where do we stand? J. Mol. Med. 83, 774–785 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Ganti, S. et al. Kidney tumor biomarkers revealed by simultaneous multiple matrix metabolomics analysis. Cancer Res. 14, 3471–3479 (2012).

    Article  CAS  Google Scholar 

  116. Suchanek, K. M., May, F. J., Lee, W. J., Holman, N. A. & Roberts-Thomson, S. J. Peroxisome proliferator-activated receptor beta expression in human breast epithelial cell lines of tumorigenic and non-tumorigenic origin. Int. J. Cell Biochem. Biol. 34, 1051–1058 (2002).

    Article  CAS  Google Scholar 

  117. Suchanek, K. M. et al. Peroxisome proliferator-activated receptor alpha in the human breast cancer cell lines MCF-7 and MDA-MB-231. Mol. Carcinogen. 34, 165–171 (2002).

    Article  CAS  Google Scholar 

  118. Rini, B. I. Temsirolimus, an inhibitor of mammalian target of rapamycin. Clin. Cancer Res. 14, 1286–1290 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Motzer, R. J. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372, 449–456 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Angevin, E. et al. Phase I study of dovitinib (TKI258), an oral FGFR, VEGFR, and PDGFR inhibitor, in advanced or metastatic renal cell carcinoma. Clin. Cancer Res. doi:10.1158/1078-0432.CCR-12-2885.

    Article  CAS  PubMed  Google Scholar 

  121. Yap, T. A. et al. First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J. Clin. Oncol. 29, 4688–4695 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Pal, S. K. et al. Novel therapies for metastatic renal cell carcinoma: efforts to expand beyond the VEGF/mTOR signaling paradigm. Mol. Cancer Ther. 11, 526–537 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dittrich, C. et al. Phase I and pharmacokinetic study of E7070, a chloroindolyl-sulfonamide anticancer agent, administered on a weekly schedule to patients with solid tumors. Clin. Cancer Res. 9, 5195–5204 (2003).

    CAS  PubMed  Google Scholar 

  124. Underiner, T. L., Herbertz, T. & Miknyoczki, S. J. Discovery of small molecule c-Met inhibitors: Evolution and profiles of clinical candidates. Anticancer Agents Med. Chem. 10, 7–27 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  126. Tolcher, A. W. et al. Phase I study of RO4929097, a gamma secretase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors. J. Clin. Oncol. 30, 2348–2353 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dasari, A. et al. A phase I study of sorafenib and vorinostat in patients with advanced solid tumors with expanded cohorts in renal cell carcinoma and non-small cell lung cancer. Invest. New Drugs 31, 115–125 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Tan, J., Cang, S., Ma, Y., Petrillo, R. L. & Liu, D. Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J. Hematol. Oncol. 3, 5 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Huang, H. et al. A phase II clinical trial of ixabepilone (Ixempra; BMS-247550; NSC 710428), an epothilone B analog, in patients with metastatic renal cell carcinoma. Clin. Cancer Res. 16, 1634–1641 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 26, 2443–2454 (2012).

    Article  CAS  Google Scholar 

  131. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 26, 2455–2465 (2012).

    Article  CAS  Google Scholar 

  132. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  133. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  134. Kondagunta, G. V. et al. Phase II trial of bortezomib for patients with advanced renal cell carcinoma. J. Clin. Oncol. 22, 3720–3725 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  136. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  137. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

Download references

Acknowledgements

The work by R. H. Weiss was supported by National Institutes of Health grants 1R01CA135401-01A1 and 1R01DK082690-01A1, as well as the Medical Service of the US Department of Veterans' Affairs.

Author information

Authors and Affiliations

Authors

Contributions

H. I. Wettersten researched the literature for this article. R. H. Weiss and H. I. Wettersten contributed towards writing, discussing, and editing the manuscript.

Corresponding author

Correspondence to Robert H. Weiss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wettersten, H., Weiss, R. Potential biofluid markers and treatment targets for renal cell carcinoma. Nat Rev Urol 10, 336–344 (2013). https://doi.org/10.1038/nrurol.2013.52

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2013.52

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer