Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Toll-like receptors in urothelial cells—targets for cancer immunotherapy

Abstract

Toll-like receptors (TLRs) have an important role in the activation of both innate and adaptive immunity in response to pathogens and danger signals. These receptors are expressed in immune cells and in some epithelia. They are expressed in the epithelium of the urinary bladder, where they actively participate in the fight against infection by uropathogens. TLR expression is decreased (although still evident) in bladder tumours, especially in non-muscle-invasive tumours. Intravesical immunotherapy with BCG to prevent recurrence of these tumours has been shown to involve the participation of three different TLRs (TLR2, TLR4, and TLR9). However, alternative therapies are needed as BCG fails in some patients and can sometimes cause severe adverse effects that are difficult to tolerate. In recent years, TLR2, TLR4, TLR7, and TLR9 agonists have been tested in vitro and in vivo for their ability to activate an antitumour immune response against bladder cancer. Promising results from these studies have led to the testing of TLR7 and TLR9 agonists in clinical trials.

Key Points

  • Toll-like receptors (TLRs) are transmembrane proteins present in immune cells and some epithelial cells, which initiate an immune response upon activation by microbial pathogens or danger signals

  • TLRs are expressed and active in normal bladder epithelial cells, where they contribute to resistance against infection by uropathogens

  • Expression of TLRs is maintained, although slightly reduced, in non-muscle-invasive bladder cancer cells compared with normal bladder epithelial cells

  • TLR agonists can be used to activate TLR pathways and some have been used successfully to treat various diseases, including some cancers (for example, basal cell carcinomas)

  • TLR agonists have been tested for their ability to treat bladder cancer in vitro and in vivo using animal models, with promising results

  • Some TLR agonists, such as mycobacterial cell wall DNA complexes and imiquimod, have been tested in clinical trials on patients with bladder cancer

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified representation of the TLR response to uropathogens and to BCG in the human bladder.
Figure 2: Reverse transcriptase PCR analysis of TLR mRNA expression in four short-term primary cultures of normal human urothelial cells and 15 bladder cancer cell lines.

Similar content being viewed by others

References

  1. Babjuk, M. et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder, the 2011 update. Eur. Urol. 59, 997–1008 (2011).

    Article  PubMed  Google Scholar 

  2. Jemal, A. et al. Cancer statistics, 2008. CA Cancer J. Clin. 58, 71–96 (2008).

    Article  PubMed  Google Scholar 

  3. van Rhijn, B. W. et al. Recurrence and progression of disease in non-muscle-invasive bladder cancer: from epidemiology to treatment strategy. Eur. Urol. 56, 430–442 (2009).

    Article  PubMed  Google Scholar 

  4. Brausi, M. et al. A review of current guidelines and best practice recommendations for the management of nonmuscle invasive bladder cancer by the International Bladder Cancer Group. J. Urol. 186, 2158–2167 (2011).

    Article  PubMed  Google Scholar 

  5. Feifer, A. H., Taylor, J. M., Tarin, T. V. & Herr, H. W. Maximizing cure for muscle-invasive bladder cancer: integration of surgery and chemotherapy. Eur. Urol. 59, 978–984 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. van den Bosch, S. & Alfred, W. J. Long-term cancer-specific survival in patients with high-risk, non-muscle-invasive bladder cancer and tumour progression: a systematic review. Eur. Urol. 60, 493–500 (2011).

    Article  PubMed  Google Scholar 

  7. Botteman, M. F., Pashos, C. L., Redaelli, A., Laskin, B. & Hauser, R. The health economics of bladder cancer: a comprehensive review of the published literature. Pharmacoeconomics 21, 1315–1330 (2003).

    Article  PubMed  Google Scholar 

  8. Herr, H. W. et al. Intravesical bacillus Calmette-Guerin therapy prevents tumour progression and death from superficial bladder cancer: ten-year follow-up of a prospective randomized trial. J. Clin. Oncol. 13, 1404–1408 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Malmstrom, P. U. et al. An individual patient data meta-analysis of the long-term outcome of randomised studies comparing intravesical mitomycin C versus bacillus Calmette-Guerin for non-muscle-invasive bladder cancer. Eur. Urol. 56, 247–256 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Kresowik, T. P. & Griffith, T. S. Bacillus Calmette-Guerin immunotherapy for urothelial carcinoma of the bladder. Immunotherapy 1, 281–288 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Brandau, S. & Suttmann, H. Thirty years of BCG immunotherapy for non-muscle invasive bladder cancer: a success story with room for improvement. Biomed. Pharmacother. 61, 299–305 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Birder, L. A. Urinary bladder urothelium: molecular sensors of chemical/thermal/mechanical stimuli. Vascul. Pharmacol. 45, 221–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Bevers, R. F., Kurth, K. H. & Schamhart, D. H. Role of urothelial cells in BCG immunotherapy for superficial bladder cancer. Br. J. Cancer 91, 607–612 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lattime, E. C., Gomella, L. G. & McCue, P. A. Murine bladder carcinoma cells present antigen to BCG-specific CD4+ T- cells. Cancer Res. 52, 4286–4290 (1992).

    CAS  PubMed  Google Scholar 

  15. Tsuji, S. et al. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like receptors. Infect. Immun. 68, 6883–6890 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miyazaki, J. et al. Uroepithelial cells can directly respond to Mycobacterium bovis bacillus Calmette-Guerin through Toll-like receptor signalling. BJU Int. 97, 860–864 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Mendez-Samperio, P., Belmont, L. & Miranda, E. Mycobacterium bovis BCG Toll-like receptors 2 and 4 cooperation increases the innate epithelial immune response. Arch. Med. Res. 39, 33–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Simons, M. P., O'Donnell, M. A. & Griffith, T. S. Role of neutrophils in BCG immunotherapy for bladder cancer. Urol. Oncol. 26, 341–345 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ayari, C., Bergeron, A., LaRue, H., Menard, C. & Fradet, Y. Toll-like receptors in normal and malignant human bladders. J. Urol. 185, 1915–1921 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Z. & Schluesener, H. J. Mammalian toll-like receptors: from endogenous ligands to tissue regeneration. Cell Mol. Life Sci. 63, 2901–2907 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Li, X., Jiang, S. & Tapping, R. I. Toll-like receptor signalling in cell proliferation and survival. Cytokine 49, 1–9 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3, 133–146 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Yamamoto, M. & Takeda, K. Current views of toll-like receptor signalling pathways. Gastroenterol. Res. Pract. 240, 365 (2010).

    Google Scholar 

  27. Zahringer, U., Lindner, B., Inamura, S., Heine, H. & Alexander, C. TLR2 - promiscuous or specific? A critical re-evaluation of a receptor apparent broad specificity. Immunobiology 213, 205–224 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Hashimoto, M. et al. Not lipoteichoic acid but lipoproteins appear to be the dominant immunobiologically active compounds in Staphylococcus aureus. J. Immunol. 177, 3162–3169 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Tsan, M. F. & Gao, B. Pathogen-associated molecular pattern contamination as putative endogenous ligands of Toll-like receptors. J. Endotoxin. Res. 13, 6–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Travassos, L. H. et al. Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep. 5, 1000–1006 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schilling, J. D. et al. CD14- and toll-like receptor-dependent activation of bladder epithelial cell by lipopolysaccharide and type 1 piliated Escherichia coli. Infect. Immun. 71, 1470–1480 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Khandelwal, P., Abraham, S. N. & Apodaca, G. Cell biology and physiology of the uroepithelium. Am. J. Physiol. Renal Physiol. 297, F1477–F1501 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Song, J. & Abraham, S. N. TLR-mediated immune responses in the urinary tract. Curr. Opin. Microbiol. 11, 66–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hooton, T. M. & Stamm, W. E. Diagnosis and treatment of uncomplicated urinary tract infection. Infect. Dis. Clin. North Am. 11, 551–581 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Song, J., Bishop, B. L., Li, G., Duncan, M. J. & Abraham, S. N. TLR4-initiated and cAMP-mediated abrogation of bacterial invasion of the bladder. Cell Host. Microbe 1, 287–298 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hagberg, L. et al. Difference in susceptibility to gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect. Immun. 46, 839–844 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shahin, R. D., Engberg, I., Hagberg, L. & Svanborg, E. C. Neutrophil recruitment and bacterial clearance correlated with LPS responsiveness in local gram-negative infection. J. Immunol. 138, 3475–3480 (1987).

    CAS  PubMed  Google Scholar 

  38. Suhs, K. A., Marthaler, B. R., Welch, R. A. & Hopkins, W. J. Lack of association between the Tlr4 (Lpsd/Lpsd) genotype and increased susceptibility to Escherichia coli bladder infections in female C3H/HeJ mice. MBio. 2, e00094–e00111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Agnese, D. M. et al. Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J. Infect. Dis. 186, 1522–1525 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Karoly, E. et al. Heat shock protein 72 (HSPA1B) gene polymorphism and Toll-like receptor (TLR) 4 mutation are associated with increased risk of urinary tract infection in children. Paediatr. Res. 61, 371–374 (2007).

    Article  CAS  Google Scholar 

  41. Ragnarsdottir, B. et al. Reduced toll-like receptor 4 expression in children with asymptomatic bacteriuria. J. Infect. Dis. 196, 475–484 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Godaly, G. & Svanborg, C. Urinary tract infections revisited. Kidney Int. 71, 721–723 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Fischer, H., Yamamoto, M., Akira, S., Beutler, B. & Svanborg, C. Mechanism of pathogen-specific TLR4 activation in the mucosa: fimbriae, recognition receptors and adaptor protein selection. Eur. J. Immunol. 36, 267–277 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Svanborg, C. et al. Uropathogenic Escherichia coli as a model of host-parasite interaction. Curr. Opin. Microbiol. 9, 33–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Nagai, Y. et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat. Immunol. 3, 667–672 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Shimizu, T. et al. Membrane-anchored CD14 is important for induction of interleukin-8 by lipopolysaccharide and peptidoglycan in uroepithelial cells. Clin. Diagn. Lab. Immunol. 11, 969–976 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Song, J. & Abraham, S. N. Innate and adaptive immune responses in the urinary tract. Eur. J. Clin. Invest. 38 (Suppl. 2), 21–28 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Song, J. et al. A novel TLR4-mediated signalling pathway leading to IL-6 responses in human bladder epithelial cells. PLoS Pathog. 3, e60 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ozinsky, A. et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl Acad. Sci. USA 97, 13766–13771 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Basith, S., Manavalan, B., Yoo, T. H., Kim, S. G. & Choi, S. Roles of toll-like receptors in cancer: a double-edged sword for defence and offense. Arch. Pharm. Res. 35, 1297–1316 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Hawn, T. R. et al. Genetic variation of the human urinary tract innate immune response and asymptomatic bacteriuria in women. PLoS ONE 4, e8300 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Smith, K. D. et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 4, 1247–1253 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Andersen-Nissen, E. et al. Cutting edge: Tlr5-/- mice are more susceptible to Escherichia coli urinary tract infection. J. Immunol. 178, 4717–4720 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Hawn, T. R. et al. Toll-like receptor polymorphisms and susceptibility to urinary tract infections in adult women. PLoS ONE 4, e5990 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Smith, N. J. et al. Toll-like receptor responses of normal human urothelial cells to bacterial flagellin and lipopolysaccharide. J. Urol. 186, 1084–1092 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, D. et al. A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303, 1522–1526 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Pinto, A., Morello, S. & Sorrentino, R. Lung cancer and Toll-like receptors. Cancer Immunol. Immunother. 60, 1211–1220 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Niedzielska, I. et al. Toll-like receptors and the tendency of normal mucous membrane to transform to polyp or colorectal cancer. J. Physiol. Pharmacol. 60 (Suppl. 1), 65–71 (2009).

    PubMed  Google Scholar 

  60. Zhou, M. et al. Toll-like receptor expression in normal ovary and ovarian tumours. Cancer Immunol. Immunother. 58, 1375–1385 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Morikawa, T. et al. Identification of Toll-like receptor 3 as a potential therapeutic target in clear cell renal cell carcinoma. Clin. Cancer Res. 13, 5703–5709 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Salaun, B., Lebecque, S., Matikainen, S., Rimoldi, D. & Romero, P. Toll-like receptor 3 expressed by melanoma cells as a target for therapy? Clin. Cancer Res. 13, 4565–4574 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Chen, R., Alvero, A. B., Silasi, D. A., Steffensen, K. D. & Mor, G. Cancers take their Toll--the function and regulation of Toll-like receptors in cancer cells. Oncogene 27, 225–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Kutikhin, A. G. Association of polymorphisms in TLR genes and in genes of the Toll-like receptor signalling pathway with cancer risk. Hum. Immunol. 72, 1095–1116 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Huang, B., Zhao, J., Unkeless, J. C., Feng, Z. H. & Xiong, H. TLR signalling by tumour and immune cells: a double-edged sword. Oncogene 27, 218–224 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Shen, Y., Liu, Y., Liu, S. & Zhang, A. Toll-like receptor 4 gene polymorphisms and susceptibility to bladder cancer. Pathol. Oncol. Res. 19, 275–280 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Singh, V., Srivastava, N., Kapoor, R. & Mittal, R. D. Single-nucleotide polymorphisms in genes encoding Toll-like receptor -2, -3, -4, and -9 in a case-control study with bladder cancer susceptibility in a North Indian population. Arch. Med. Res. 44, 54–61 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. LaRue, H., Parent-Vaugeois, C., Bergeron, A., Champetier, S. & Fradet, Y. Influence of spatial configuration on the expression of carcinoembryonic antigen and mucin antigens in human bladder cancer. Int. J. Cancer 71, 986–992 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Qian, Y. et al. TLR4 signalling induces B7-H1 expression through MAPK pathways in bladder cancer cells. Cancer Invest. 26, 816–821 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Yamada, H., Odonnell, M. A., Matsumoto, T. & Luo, Y. Interferon-gamma upregulates toll-like receptor 4 and cooperates with lipopolysaccharide to produce macrophage-derived chemokine and interferon-gamma inducible protein-10 in human bladder cancer cell line RT4. J. Urol. 174, 1119–1123 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Qian, Y. et al. Regulation of TLR4-induced IL-6 response in bladder cancer cells by opposing actions of MAPK and PI3K signalling. J. Cancer Res. Clin. Oncol. 135, 379–386 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Goutagny, N., Estornes, Y., Hasan, U., Lebecque, S. & Caux, C. Targeting pattern recognition receptors in cancer immunotherapy. Target. Oncol. 7, 29–54 (2012).

    Article  PubMed  Google Scholar 

  73. Hennessy, E. J., Parker, A. E. & O'Neill, L. A. Targeting Toll-like receptors: emerging therapeutics? Nat. Rev. Drug Discov. 9, 293–307 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. So, E. Y. & Ouchi, T. The application of Toll like receptors for cancer therapy. Int. J. Biol. Sci. 6, 675–681 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kavoussi, L. R., Brown, E. J., Ritchey, J. K. & Ratliff, T. L. Fibronectin-mediated Calmette-Guerin bacillus attachment to murine bladder mucosa. Requirement for the expression of an antitumour response. J. Clin. Invest 85, 62–67 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hudson, M. A., Brown, E. J., Ritchey, J. K. & Ratliff, T. L. Modulation of fibronectin-mediated Bacillus Calmette-Guerin attachment to murine bladder mucosa by drugs influencing the coagulation pathways. Cancer Res. 51, 3726–3732 (1991).

    CAS  PubMed  Google Scholar 

  77. De Reijke, T. M. et al. Cytokine production by the human bladder carcinoma cell line T24 in the presence of bacillus Calmette-Guerin (BCG). Urol. Res. 21, 349–352 (1993).

    Article  CAS  PubMed  Google Scholar 

  78. Esuvaranathan, K. et al. Interleukin-6 production by bladder tumours is upregulated by BCG immunotherapy. J. Urol. 154, 572–575 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Bohle, A. & Brandau, S. Immune mechanisms in bacillus Calmette-Guerin immunotherapy for superficial bladder cancer. J. Urol. 170, 964–969 (2003).

    Article  PubMed  Google Scholar 

  80. Suttmann, H. et al. Neutrophil granulocytes are required for effective Bacillus Calmette-Guerin immunotherapy of bladder cancer and orchestrate local immune responses. Cancer Res. 66, 8250–8257 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Suttmann, H., Lehan, N., Bohle, A. & Brandau, S. Stimulation of neutrophil granulocytes with Mycobacterium bovis bacillus Calmette-Guerin induces changes in phenotype and gene expression and inhibits spontaneous apoptosis. Infect. Immun. 71, 4647–4656 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bohle, A., Gerdes, J., Ulmer, A. J., Hofstetter, A. G. & Flad, H. D. Effects of local bacillus Calmette-Guerin therapy in patients with bladder carcinoma on immunocompetent cells of the bladder wall. J. Urol. 144, 53–58 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Scanga, C. A. et al. MyD88-deficient mice display a profound loss in resistance to Mycobacterium tuberculosis associated with partially impaired Th1 cytokine and nitric oxide synthase 2 expression. Infect. Immun. 72, 2400–2404 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Simmons, D. P. et al. Mycobacterium tuberculosis and TLR2 agonists inhibit induction of type I IFN and class I MHC antigen cross processing by TLR9. J. Immunol. 185, 2405–2415 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Huynh, K. K., Joshi, S. A. & Brown, E. J. A delicate dance: host response to mycobacteria. Curr. Opin. Immunol. 23, 464–472 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Heldwein, K. A. et al. TLR2 and TLR4 serve distinct roles in the host immune response against Mycobacterium bovis BCG. J. Leukoc. Biol. 74, 277–286 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Fremond, C. M., Nicolle, D. M., Torres, D. S. & Quesniaux, V. F. Control of Mycobacterium bovis BCG infection with increased inflammation in TLR4-deficient mice. Microbes Infect. 5, 1070–1081 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Godaly, G. & Young, D. B. Mycobacterium bovis bacille Calmette Guerin infection of human neutrophils induces CXCL8 secretion by MyD88-dependent TLR2 and TLR4 activation. Cell Microbiol. 7, 591–601 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. von Meyenn, F. et al. Toll-like receptor 9 contributes to recognition of Mycobacterium bovis Bacillus Calmette-Guerin by Flt3-ligand generated dendritic cells. Immunobiology 211, 557–565 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Uehori, J. et al. Simultaneous blocking of human Toll-like receptors 2 and 4 suppresses myeloid dendritic cell activation induced by Mycobacterium bovis bacillus Calmette-Guerin peptidoglycan. Infect. Immun. 71, 4238–4249 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kato, T. et al. Bacillus Calmette-Guerin and BCG cell wall skeleton suppressed viability of bladder cancer cells in vitro. Anticancer Res. 30, 4089–4096 (2010).

    CAS  PubMed  Google Scholar 

  92. Murata, M. Activation of Toll-like receptor 2 by a novel preparation of cell wall skeleton from Mycobacterium bovis BCG Tokyo (SMP-105) sufficiently enhances immune responses against tumours. Cancer Sci. 99, 1435–1440 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Uenishi, Y., Kawabe, K., Nomura, T., Nakai, M. & Sunagawa, M. Morphological study on Mycobacterium bovis BCG Tokyo 172 cell wall skeleton (SMP-105). J. Microbiol. Methods 77, 139–144 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Akazawa, T. et al. Adjuvant engineering for cancer immunotherapy: Development of a synthetic TLR2 ligand with increased cell adhesion. Cancer Sci. 101, 1596–1603 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Filion, M. C., Lepicier, P., Morales, A. & Phillips, N. C. Mycobacterium phlei cell wall complex directly induces apoptosis in human bladder cancer cells. Br. J. Cancer 79, 229–235 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Filion, M. C. & Phillips, N. C. Therapeutic potential of mycobacterial cell wall-DNA complexes. Expert Opin. Investig. Drugs 10, 2157–2165 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Morales, A. Evolution of intravesical immunotherapy for bladder cancer: mycobacterial cell wall preparation as a promising agent. Expert Opin. Investig. Drugs 17, 1067–1073 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Morales, A., Phadke, K. & Steinhoff, G. Intravesical mycobacterial cell wall-DNA complex in the treatment of carcinoma in situ of the bladder after standard intravesical therapy has failed. J. Urol. 181, 1040–1045 (2009).

    Article  PubMed  Google Scholar 

  99. Takeshita, F. et al. Cutting edge: Role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J. Immunol. 167, 3555–3558 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Haemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  Google Scholar 

  101. Atkins, H., Davies, B. R., Kirby, J. A. & Kelly, J. D. Polarisation of a T-helper cell immune response by activation of dendritic cells with CpG-containing oligonucleotides: a potential therapeutic regime for bladder cancer immunotherapy. Br. J. Cancer 89, 2312–2319 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ninalga, C., Loskog, A., Klevenfeldt, M., Essand, M. & Totterman, T. H. CpG oligonucleotide therapy cures subcutaneous and orthotopic tumours and evokes protective immunity in murine bladder cancer. J. Immunother. 28, 20–27 (2005).

    Article  PubMed  Google Scholar 

  103. Mangsbo, S. M., Ninalga, C., Essand, M., Loskog, A. & Totterman, T. H. CpG therapy is superior to BCG in an orthotopic bladder cancer model and generates CD4+ T-cell immunity. J. Immunother. 31, 34–42 (2008).

    Article  PubMed  Google Scholar 

  104. Hegele, A. et al. Antineoplastic effect of immunostimulatory DNA (CpG-ODN) in a murine C57-BL6/MB-49 transitional cell carcinoma model. Anticancer Res. 24, 2225–2230 (2004).

    CAS  PubMed  Google Scholar 

  105. Hegele, A. et al. Immunostimulatory CpG oligonucleotides reduce tumour burden after intravesical administration in an orthotopic murine bladder cancer model. Tumour Biol. 26, 274–280 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Olbert, P. J. et al. In vitro and in vivo effects of CpG-Oligodeoxynucleotides (CpG-ODN) on murine transitional cell carcinoma and on the native murine urinary bladder wall. Anticancer Res. 29, 2067–2076 (2009).

    CAS  PubMed  Google Scholar 

  107. Mangsbo, S. M. et al. Enhanced tumour eradication by combining CTLA-4 or PD-1 blockade with CpG therapy. J. Immunother. 33, 225–235 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Codolo, G. et al. HP-NAP inhibits the growth of bladder cancer in mice by activating a cytotoxic Th1 response. Cancer Immunol. Immunother. 61, 31–40 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Smith, E. B. et al. Antitumour effects of imidazoquinolines in urothelial cell carcinoma of the bladder. J. Urol. 177, 2347–2351 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Hayashi, T. et al. Intravesical Toll-like receptor 7 agonist R-837: optimization of its formulation in an orthotopic mouse model of bladder cancer. Int. J. Urol. 17, 483–490 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Falke, J. et al. A preclinical placebo controlled efficacy study with R-837 and TMX-202 in an orthotopic rat bladder cancer model. Eur. Urol. 10, 80 (2011).

    Article  Google Scholar 

  112. Falke, J. et al. Results of a phase 1 dose escalation study of intravesical TMX-101 in patients with non-muscle invasive bladder cancer. J. Urol. 19, 275–280 (2012).

    Google Scholar 

  113. US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01731652?term=bladder+cancer+tmx-101&rank=1 (2013).

  114. de Bono, J. S. et al. Phase I study of ONO-4007, a synthetic analogue of the lipid A moiety of bacterial lipopolysaccharide. Clin. Cancer Res. 6, 397–405 (2000).

    CAS  PubMed  Google Scholar 

  115. Cho, Y. J., Ahn, B. Y., Lee, N. G., Lee, D. H. & Kim, D. S. A combination of E. coli DNA fragments and modified lipopolysaccharides as a cancer immunotherapy. Vaccine 24, 5862–5871 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Vacchelli, E. et al. Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. Onco-immunology 1, 894–907 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H. LaRue, C. Ayari, and A. Bergeron researched, wrote, edited, and discussed this Review article. Y. Fradet made substantial contributions towards discussions of contents and reviewed the manuscript before submission.

Corresponding author

Correspondence to Yves Fradet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaRue, H., Ayari, C., Bergeron, A. et al. Toll-like receptors in urothelial cells—targets for cancer immunotherapy. Nat Rev Urol 10, 537–545 (2013). https://doi.org/10.1038/nrurol.2013.153

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2013.153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing