When (and how) to surgically treat asymptomatic renal stones


Asymptomatic renal stones are identified in 8–10% of screened populations. With the increasing utilization of CT, the number of patients seeking urologic care for incidentally diagnosed renal calculi is likely to increase. Such patients present an important management dilemma: differentiating those to treat surgically from those who can be safely observed. Observational studies have revealed that approximately 50% of asymptomatic stones will progress, but most will not require surgery. Stones >15 mm in diamater and located in the renal pelvis are at highest risk of progression. Although no guidelines exist for the optimal monitoring regimen for asymptomatic stones, follow-up studies may include serum creatinine, plain radiography, ultrasonography, and CT. Shock wave lithotripsy (SWL) does not seem to offer significant benefit over observation for asymptomatic calyceal stones. Percutaneous nephrolithotomy does improve stone-free rates compared to SWL or observation. Additional research is needed to characterize the role of ureteroscopic management of asymptomatic renal stones.

Key Points

  • The prevalence of asymptomatic stones identified in screened populations is 8–10%, and is likely to grow with increased CT utilization

  • Outcomes of asymptomatic stones <10 mm in diamater include a symptomatic stone event (13–32%), spontaneous passage (13–20%), size increase (30–46%) and intervention (7–26%)

  • Asymptomatic stones located in the renal pelvis and >15 mm are at high risk of progression, defined as increase in size, symptomatic stone event, or need for intervention

  • Shockwave lithotripsy does not improve stone-free rates or quality of life compared to observation for asymptomatic calyceal stones <15 mm

  • Percutaneous nephrolithotomy improves stone-free rates compared to shockwave lithotriposy and observation for asymptomatic lower pole stones

  • Randomized trials are needed to define the role of ureteroscopy in the management of asymptomatic renal stones

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Johnson, C. M., Wilson, D. M., O'Fallon, W. M., Malek, R. S. & Kurland, L. T. Renal stone epidemiology: a 25-year study in Rochester, Minnesota. Kidney Int. 16, 624–631 (1979).

    CAS  Article  Google Scholar 

  2. 2

    Hiatt, R. A., Dales, L. G., Friedman, G. D. & Hunkeler, E. M. Frequency of urolithiasis in a prepaid medical care program. Am. J. Epidemiol. 115, 255–265 (1982).

    CAS  Article  Google Scholar 

  3. 3

    Stamatelou, K. K., Francis, M. E., Jones, C. A., Nyberg, L. M. & Curhan, G. C. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 63, 1817–1823 (2003).

    Article  Google Scholar 

  4. 4

    Scales, C. D. Jr et al. Changing gender prevalence of stone disease. J. Urol. 177, 979–982 (2007).

    Article  Google Scholar 

  5. 5

    Pearle, M. S., Calhoun, E. A. & Curhan, G. C. Urologic diseases in America project: urolithiasis. J. Urol. 173, 848–857 (2005).

    Article  Google Scholar 

  6. 6

    Brenner, D. J. & Hall, E. J. Computed tomography—an increasing source of radiation exposure. N. Engl. J. Med. 357, 2277–2284 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Berrington de Gonzalez, A. et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch. Intern. Med. 169, 2071–2077 (2009).

    Article  Google Scholar 

  8. 8

    Boyce, C. J., Pickhardt, P. J., Lawrence, E. M., Kim, D. H. & Bruce, R. J. Prevalence of urolithiasis in asymptomatic adults: objective determination using low dose noncontrast computerized tomography. J. Urol. 183, 1017–1021 (2010).

    Article  Google Scholar 

  9. 9

    Lorenz, E. C. et al. Clinical characteristics of potential kidney donors with asymptomatic kidney stones. Nephrol. Dial. Transplant. 26, 2695–2700 (2011).

    Article  Google Scholar 

  10. 10

    Glowacki, L. S., Beecroft, M. L., Cook, R. J., Pahl, D. & Churchill, D. N. The natural history of asymptomatic urolithiasis. J. Urol. 147, 319–321 (1992).

    CAS  Article  Google Scholar 

  11. 11

    Burgher, A., Beman, M., Holtzman, J. L. & Monga, M. Progression of nephrolithiasis: long-term outcomes with observation of asymptomatic calculi. J. Endourol. 18, 534–539 (2004).

    Article  Google Scholar 

  12. 12

    Koh, L. T., Ng, F. C. & Ng, K. K. Outcomes of long-term follow-up of patients with conservative management of asymptomatic renal calculi. BJU Int. http://dx.doi.org/10.1111/j.1464-410X.2011.10329.x.

  13. 13

    Inci, K. et al. Prospective long-term followup of patients with asymptomatic lower pole caliceal stones. J. Urol. 177, 2189–2192 (2007).

    Article  Google Scholar 

  14. 14

    Fine, J. K., Pak, C. Y. & Preminger, G. M. Effect of medical management and residual fragments on recurrent stone formation following shock wave lithotripsy. J. Urol. 153, 27–32; discussion 32–33 (1995).

    CAS  Article  Google Scholar 

  15. 15

    El-Nahas, A. R., El-Assmy, A. M., Madbouly, K. & Sheir, K. Z. Predictors of clinical significance of residual fragments after extracorporeal shockwave lithotripsy for renal stones. J. Endourol. 20, 870–874 (2006).

    Article  Google Scholar 

  16. 16

    Streem, S. B., Yost, A. & Mascha, E. Clinical implications of clinically insignificant store fragments after extracorporeal shock wave lithotripsy. J. Urol. 155, 1186–1190 (1996).

    CAS  Article  Google Scholar 

  17. 17

    Raman, J. D. et al. Natural history of residual fragments following percutaneous nephrostolithotomy. J. Urol. 181, 1163–1168 (2009).

    Article  Google Scholar 

  18. 18

    Ganpule, A. & Desai, M. Fate of residual stones after percutaneous nephrolithotomy: a critical analysis. J. Endourol. 23, 399–403 (2009).

    Article  Google Scholar 

  19. 19

    Rebuck, D. A., Macejko, A., Bhalani, V., Ramos, P. & Nadler, R. B. The natural history of renal stone fragments following ureteroscopy. Urology 77, 564–568 (2011).

    Article  Google Scholar 

  20. 20

    Kang, D. E. et al. Effect of medical management on recurrent stone formation following percutaneous nephrolithotomy. J. Urol. 177, 1785–1788; discussion 1788–1789 (2007).

    Article  Google Scholar 

  21. 21

    Bandi, G., Best, S. L. & Nakada, S. Y. Current practice patterns in the management of upper urinary tract calculi in the north central United States. J. Endourol. 22, 631–636 (2008).

    Article  Google Scholar 

  22. 22

    Skolarikos, A., Laguna, M. P., Alivizatos, G., Kural, A. R. & de la Rosette, J. J. The role for active monitoring in urinary stones: a systematic review. J. Endourol. 24, 923–930 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Goel, M. C., Ahlawat, R., Kumar, M. & Kapoor, R. Chronic renal failure and nephrolithiasis in a solitary kidney: role of intervention. J. Urol. 157, 1574–1577 (1997).

    CAS  Article  Google Scholar 

  24. 24

    Bucuras, V. et al. The Clinical Research Office of the Endourological Society Percutaneous Nephrolithotomy Global Study: nephrolithotomy in 189 patients with solitary kidneys. J. Endourol. http://dx.doi.org/10.1089/end.2011.0169.

  25. 25

    Hyams, E. S., Winer, A. G. & Shah, O. Retrograde ureteral and renal access in patients with urinary diversion. Urology 74, 47–50 (2009).

    Article  Google Scholar 

  26. 26

    Krambeck, A. E. et al. Management of nephrolithiasis after Cohen cross-trigonal and Glenn-Anderson advancement ureteroneocystostomy. J. Urol. 177, 174–178 (2007).

    Article  Google Scholar 

  27. 27

    Dogan, H. S. & Tekgul, S. Management of pediatric stone disease. Curr. Urol. Rep. 8, 163–173 (2007).

    Article  Google Scholar 

  28. 28

    Nelson, C. P. Extracorporeal shock wave lithotripsy in the pediatric population. Urol. Res. 38, 327–331 (2010).

    Article  Google Scholar 

  29. 29

    Smaldone, M. C., Corcoran, A. T., Docimo, S. G. & Ost, M. C. Endourological management of pediatric stone disease: present status. J. Urol. 181, 17–28 (2009).

    Article  Google Scholar 

  30. 30

    Raj, G. V., Bennett, R. T., Preminger, G. M., King, L. R. & Wiener, J. S. The incidence of nephrolithiasis in patients with spinal neural tube defects. J. Urol. 162, 1238–1242 (1999).

    CAS  Article  Google Scholar 

  31. 31

    Stravodimos, K. G., Adamis, S., Tyritzis, S., Georgios, Z. & Constantinides, C. A. Renal transplant lithiasis: analysis of our series and review of the literature. J. Endourol. http://dx.doi.org/10.1089/end.2011.0049.

  32. 32

    Strang, A. M., Lockhart, M. E., Amling, C. L., Kolettis, P. N. & Burns, J. R. Living renal donor allograft lithiasis: a review of stone related morbidity in donors and recipients. J. Urol. 179, 832–836 (2008).

    Article  Google Scholar 

  33. 33

    Rifaioglu, M. M., Berger, A. D., Pengune, W. & Stoller, M. L. Percutaneous management of stones in transplanted kidneys. Urology 72, 508–512 (2008).

    Article  Google Scholar 

  34. 34

    Chu, D. I. & Freedland, S. J. Prostate cancer. Socioeconomic status and disparities in treatment patterns. Nat. Rev. Urol. 7, 480–481 (2010).

    Article  Google Scholar 

  35. 35

    Fazel, R. et al. Exposure to low-dose ionizing radiation from medical imaging procedures. N. Engl. J. Med. 361, 849–857 (2009).

    CAS  Article  Google Scholar 

  36. 36

    Mancini, J. G. & Ferrandino, M. N. The impact of new methods of imaging on radiation dosage delivered to patients. Curr. Opin. Urol. 20, 163–168 (2010).

    Article  Google Scholar 

  37. 37

    Zilberman, D. E. et al. Low dose computerized tomography for detection of urolithiasis—its effectiveness in the setting of the urology clinic. J. Urol. 185, 910–914 (2011).

    Article  Google Scholar 

  38. 38

    Mermuys, K. et al. Digital tomosynthesis in the detection of urolithiasis: Diagnostic performance and dosimetry compared with digital radiography with MDCT as the reference standard. AJR Am. J. Roentgenol. 195, 161–167 (2010).

    Article  Google Scholar 

  39. 39

    Keeley, F. X. Jr et al. Preliminary results of a randomized controlled trial of prophylactic shock wave lithotripsy for small asymptomatic renal calyceal stones. BJU Int. 87, 1–8 (2001).

    Article  Google Scholar 

  40. 40

    Yuruk, E. et al. A prospective, randomized trial of management for asymptomatic lower pole calculi. J. Urol. 183, 1424–1428 (2010).

    Article  Google Scholar 

  41. 41

    Albala, D. M. et al. Lower pole I: a prospective randomized trial of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy for lower pole nephrolithiasis-initial results. J. Urol. 166, 2072–2080 (2001).

    CAS  Article  Google Scholar 

  42. 42

    Pearle, M. S. et al. Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J. Urol. 173, 2005–2009 (2005).

    Article  Google Scholar 

  43. 43

    Bilgasem, S., Pace, K. T., Dyer, S. & Honey, R. J. Removal of asymptomatic ipsilateral renal stones following rigid ureteroscopy for ureteral stones. J. Endourol. 17, 397–400 (2003).

    Article  Google Scholar 

  44. 44

    Preminger, G. M. Management of lower pole renal calculi: shock wave lithotripsy versus percutaneous nephrolithotomy versus flexible ureteroscopy. Urol. Res. 34, 108–111 (2006).

    Article  Google Scholar 

Download references

Author information




Z. G. Goldsmith and M. E. Lipkin contributed equally to researching data for the article, discussion of content and reviewing the manuscript before submission. Z. G. Goldsmith wrote the article.

Corresponding author

Correspondence to Michael E. Lipkin.

Ethics declarations

Competing interests

M. E. Lipkin declares he has been a consultant for Boston Scientific. Z. G. Goldsmith declares no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goldsmith, Z., Lipkin, M. When (and how) to surgically treat asymptomatic renal stones. Nat Rev Urol 9, 315–320 (2012). https://doi.org/10.1038/nrurol.2012.43

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing